
Managing scope ambiguities in Glue via
multistage proving

Jamie Y. Findlay
University of Oslo

Dag T. T. Haug
University of Oslo

Proceedings of the LFG’22 Conference

Miriam Butt, Jamie Y. Findlay and Ida Toivonen (Editors)

2022

CSLI Publications

http://csli-publications.stanford.edu/

http://csli-publications.stanford.edu/


Abstract

It is well known that vanilla LFG+Glue overgenerates when it comes to
scope ambiguities. This has both theoretical and practical implications: it
generates unattested readings, and also produces many spurious ambiguities
which do not correspond to linguistically relevant differences. We propose a
solution in keeping with the LFG philosophy: a new level of the parallel pro-
jection architecture, called proof-structure, which can be used to limit scopal
interactions. Unlike earlier attempts to solve this problem, the modularity of
our approach means that we do not need to alter the underlying linear logic or
proof algorithm of Glue Semantics, with the effect that existing analyses and
tools continue to be relevant and usable.

1 Introduction

Glue Semantics (Glue: Dalrymple et al. 1993, Dalrymple 1999, Asudeh 2022) is the
de facto standard theory of the syntax-semantics interface in LFG (see e.g. Dalrym-
ple et al. 2019, ch. 8). Glue offers elegant analyses of a number of phenomena such
as anaphora (Dalrymple et al. 1999, Asudeh 2005, Belyaev and Haug 2014), tense
and aspect (Haug 2008, Bary and Haug 2011), and argument structure/argument
realisation (Asudeh and Giorgolo 2012, Findlay 2016, 2020). But it is its unique
approach to quantification (Dalrymple et al. 1999) for which Glue is perhaps best
known: in Glue there is no syntactic ambiguity associated with scope ambiguity
(there is no operation of Quantifier Raising, for instance). Rather, different scopes
correspond to the different proofs which can be obtained from the same set of
meaning constructor premises.

However, despite its strengths, this approach to scope ambiguities is ultimately
too permissive: it overgenerates, producing both unattested readings and large
numbers of spurious ambiguities which turn out to be logically equivalent. Existing
proposals aiming to solve this problem involve either complexifying the linear
logic component of Glue (Gotham 2019, 2021), or modifying the algorithm which
delivers the linear logic proofs (Crouch and van Genabith 1999).1 In this paper,
we present a different solution: in keeping with the modular philosophy of LFG,
we introduce a new level of representation, which we call proof-structure, where
certain structural constraints on the linear logic proof can be enforced. This enables
us to put limitations on composition that restrict the number of readings available,
and to do so in linguistically-principled ways. It also means that we leave the logic

†We thank audiences at the 32nd SE-LFG meeting and at the LFG’22 conference for their
feedback, especially Ash Asudeh, Miriam Butt, Mary Dalrymple, and Davide Mocci. This work was
supported by the Research Council of Norway, grant number 300495 “Universal Natural Language
Understanding”, which we gratefully acknowledge.

1Andrews (2018, 141f.) also offers a solution to a subset of the problems discussed in this paper,
but this a) is not as general a solution as the others mentioned in the text, or what we propose
below; and b) involves recapitulating c-structure information at f-structure, thus violating the modular
philosophy of LFG’s parallel projection architecture.

144



itself and the proof algorithm untouched, which has the advantage that existing
analyses and tools (such as the Glue Semantics Workbench – Meßmer and Zymla
2018) remain valid and usable.

We begin, in Section 2, by presenting four scope-related problems for Glue.
Section 3 introduces proof-structure, and Section 4 shows how it can be used to
solve these problems. Finally, Section 5 addresses some technical questions of
implementation, and shows how our proposal still permits linguistic analysis to be
viewed declaratively and not procedurally.

2 The problems

2.1 Modifier scope

In many languages, including English, the order in which modifiers like attributive
adjectives appear determines their relative scope. For example, a nominal containing
two intensional adjectives, like alleged former racketeer, is interpreted with the first
adjective having scope over the second:

(1) Jalleged former racketeerK (Andrews and Manning 1999)
= alleged(former(racketeer))
̸= former(alleged(racketeer))

That is, an alleged former racketeer is someone alleged to be a former racketeer, not
someone formerly alleged to be a racketeer.

The same ordering effects are observed when we mix intensional and intersective
adjectives:2

(2) Jcounterfeit American coinK (Campbell 2002)
= counterfeit(american(coin))
̸= american(counterfeit(coin))

(3) Jtrustworthy former chairmanK (Lowe 2015, 441)
= trustworthy(former(chairman))
̸= former(trustworthy(chairman))

Example (2) refers to a counterfeit instance of an American coin, and not, say, to
an American attempt at counterfeiting some other currency; while (3) refers to a
trustworthy person who used to be a chairman, not someone who was formerly a
trustworthy chairman.

2It is notoriously difficult to find any adjectives that are truly and unambiguously intersective. Here
we use American and trustworthy (and, below, Scottish); to the extent that any adjectives are genuinely
intersective, we feel these are good representatives, but the reader should feel free to replace them
with others if they disagree. In fact, nothing we say here requires there to be a real distinction between
intensional and intersective adjectives; as we point out below, the apparent lack of an ordering effect
in sentences involving multiple intersective adjectives, like (4), follows from the meanings of the
adjectives, not anything structural – a position which is wholly compatible with both adjectives being
intensional to some greater or lesser extent.

145



When both adjectives are intersective, order does not appear to impose such a
scopal restriction:

(4) Jtrustworthy Scottish chairmanK
= trustworthy(scottish(chairman))
= scottish(trustworthy(chairman))

However, this is because the two different scopes are logically equivalent: since
intersection is represented in most meaning languages via conjunction, and con-
junction is commutative, it makes no difference in which order we combine two
intersective adjectives. In other words, since the equivalence in (5) holds, we cannot
really infer anything about the order of composition in (4): it could be either way
round and we would be unable to tell by considering the meaning, since both are
equivalent.

(5) trustworthy(scottish(chairman)) ⇔ scottish(trustworthy(chairman))

The basic observations regarding word order and scope are handled straightfor-
wardly in a theory where semantic composition is based on the phrase-structure tree:
semantic scope can be made to follow directly from c-structure scope. But this is
not possible ‘out of the box’ in LFG+Glue, since Glue meaning constructors are
connected to the syntax via f-structure, not c-structure, and f-structure flattens the
relevant scopal relationships:3

(6) C- and f-structure for alleged former racketeer:
N

Âdj

alleged

N

Âdj

former

N

racketeer

r


PRED ‘racketeer’

ADJ


[

PRED ‘alleged’
]

[
PRED ‘former’

]




Given the f-structure in (6), we would end up with the following instantiated mean-
ing constructors for this phrase:

3In many versions of LFG+Glue (e.g. that presented in Dalrymple et al. 2019, ch. 8), meaning
constructors are hooked up to s(emantic)-structures, not f-structures, but this has no bearing on the
problem presented here, since s-structure is itself a projection of f-structure, and so cannot recover
information that is not recoverable at f-structure. In this paper, we make use of first-order Glue
(Kokkonidis 2008), whereby the linear logic types are provided by unary predicate type constructors
which take structures (in this case f-structures) as their arguments. This provides for more readable
meaning constructors, and removes the need for otherwise unmotivated s-structure attributes like VAR

and RESTR (Kokkonidis 2008, 63f.; Findlay 2019, 182f.). Nothing hinges on this choice, however.

146



(7) racketeer : (er ⊸ tr)
alleged : (er ⊸ tr) ⊸ (er ⊸ tr)
former : (er ⊸ tr) ⊸ (er ⊸ tr)

But these impose no constraints on the order in which the second and third meaning
constructors apply to the first, so from the premises in (7), we can obtain proofs of
both scopal interpretations, i.e. both (8a) and (8b), thereby overgenerating:

(8) a. former(alleged(racketeer))
b. alleged(former(racketeer))

2.2 Scope freezing

From the modifier scope data, we might think that the problem is that c-structure
information needs to be visible at f-structure (this is the motivation behind An-
drews’s 2018 solution mentioned in fn. 1, for example). But the scopal structure
of a sentence does not simply recapitulate c-structure scope; it can also introduce
different/additional structure. This is apparent in so-called scope freezing. Some
constructions, such as the English double object construction (David Lebeaux apud
Larson 1990, 603) or German SVO clauses (Gotham 2019, 115), allow only one
scopal interpretation, unlike other, similar constructions in these languages.

For example, (9) can only mean that there is a student whom Hilary gave every
grade to (where the existential scopes over the universal quantifier, ∃ > ∀), not that
every grade is such that it was given to at least one student (∀ > ∃):

(9) Hilary gave a student every grade.

But of course in English simple transitive sentences, such scope ambiguity does
occur. (10) is ambiguous between precisely the two scenarios described above:4

(10) A student received every grade.

In German, we observe a similar pattern in the difference between SVO and
OVS word orders. (11) has only one scopal interpretation, where there is at least one
officer who is individually responsible for guarding every exit him/herself (∃ > ∀).
By contrast, (12) is ambiguous and permits the reading where each exit is such that
a (potentially different) officer guards it (∀ > ∃).

(11) Ein
a.NOM

Polizist
police.officer

bewacht
guards

jeden
every.ACC

Ausgang.
exit

‘A police officer guards every exit.’

(12) Jeden
every.ACC

Ausgang
exit

bewacht
guards

ein
a.NOM

Polizist.
police.officer

4Note that here c-structure scope explicitly does not constrain quantifier scope: the subject NP
outscopes the object at c-structure in (10), but this is irrelevant for semantic interpretation. This once
again shows that semantic scope is orthogonal to c-structure scope, and not simply reducible to it.

147



Once again, standard LFG+Glue has no way of enforcing a constraint like
scope freezing, since the f-structures for all these examples will be flat, with no
scopal relationship between the arguments (and the f-structures of (11) and (12)
will in fact be identical).

2.3 Scope islands

Some combinations of embedding verbs and quantifiers can result in subordinate
clauses becoming what are called scope islands (Barker 2022); quantifiers inside
such islands cannot scope outside of them. For example, in (13), the universal
quantifier introduced by every cannot scope over the existential quantifier introduced
by a in the higher clause:

(13) A warden thinks [that every prisoner escaped]. (Gotham 2021, 150)

a. = There is a warden who thinks that every prisoner escaped.
(∃ > ∀)

b. ̸= For every prisoner, there is a warden who thinks they escaped.
(∗∀ > ∃)

This is not determined by syntactic structure alone, but rather by poorly understood
interactions between embedding operators and the quantifiers they embed. For
instance, (14) has apparently exactly the same syntactic structure as (13), and
involves the same two quantifiers, but contains a different embedding verb, and here
the universal can outscope the existential, ‘escaping’ from the downstairs clause,
which is evidently no longer an island:

(14) An accomplice ensured [that every prisoner escaped]. (Gotham 2021, 151)

a. = There is an accomplice who ensured that every prisoner escaped.
(∃ > ∀)

b. = For every prisoner, there is an accomplice who ensured they escaped.
(∀ > ∃)

Vanilla LFG+Glue predicts that there should be no scope islands, and that
inverse scope readings should always be available, contrary to fact. Gotham (2021)
provides a solution to this problem, but he does so by introducing (new) modalities to
the linear logic. We would prefer a solution that leaves the underlying mechanisms
of Glue unchanged.

2.4 Sublexical meanings

Recent work in LFG+Glue (e.g. Asudeh et al. 2014, Przepiórkowski 2017, Findlay
2020) has proposed to break down lexical meaning (using templates) so that common
parts can be shared across lexical entries. (15) shows an example lexical entry for
the passive participle crushed, based on Asudeh et al. (2014, 79):

148



(15) crushed V (↑ PRED) = ‘crush’
@AGENT

@PATIENT

@PASSIVE

λe.crush(e) : v↑ ⊸ t↑

The meaning contribution of this verb is factored out into several components:
the last line provides the only idiosyncratic meaning, a predicate which describes
the kind of event expressed by crushed. The preceding three lines each provide a
meaning constructor that will also recur in other verbs. The first template provides a
meaning constructor which adds an Agent argument to the event predicate expressed
by the verb; the second does the same for a Patient argument; and the third provides
an optional meaning constructor which existentially closes a dependency on the
Agent argument, to be used when it is unexpressed (as in the short passive). These
templates are spelled out below:5

(16) AGENT :=
λP.λx.λe.P (e) ∧ agent(e, x) : (v↑ ⊸ t↑) ⊸ e(↑σARG1) ⊸ v↑ ⊸ t↑

(17) PATIENT :=
λP.λx.λe.P (e) ∧ patient(e, x) : (v↑ ⊸ t↑) ⊸ e(↑σARG2) ⊸ v↑ ⊸ t↑

(18) PASSIVE :=
(↑ VOICE) = PASSIVE(
λP.∃x[P (x)] : (e(↑σARG1) ⊸ t↑) ⊸ t↑

)
This factorisation serves an important theoretical purpose, and enables generali-

sations across the lexicon to be described in a way which is otherwise not possible.
However, by breaking up meaning constructors in this way, we also introduce a lot
of spurious ambiguity into the proofs. As an example, let us consider the analysis
which Asudeh et al. (2014) give for Kim was crushed last night. They provide seven
lexically contributed meaning constructors, and use them to obtain the proof shown
in Figure 1. However, from these seven premises, we can in fact derive no fewer than
twenty distinct proofs, though all of them are logically equivalent, corresponding to
the reading shown as the conclusion of Figure 1. This ambiguity stems from the
fact that the Glue proofs provide answers to linguistic non-questions like whether
last night is applied to the event description before or after the Patient argument is
introduced. Since the meaning is built up conjunctively, and conjunction is com-
mutative, it makes no difference which order the conjuncts are combined in – but
logically speaking, the different combinations correspond to different proofs. And
this problem will escalate exponentially with longer sentences or more complexly

5We allow the type constructors in our first-order Glue to take s-structures as well as f-structures
as arguments: here (↑σ ARG1) and (↑σ ARG2) refer to semantic arguments of the predicate which
may or may not be realised overtly in the syntax, following whatever version of Mapping Theory is
adopted (see Findlay 2016, 2020 for discussion of mapping within the theoretical framework assumed
by Asudeh et al. 2014).

149



Pasted Layer

Figure 1: Glue proof for Kim was crushed last night (Asudeh et al. 2014, 86)

subdivided lexical entries. Such a proliferation of spurious ambiguities may seem
merely inelegant from a theoretical perspective, but from a practical perspective
it can be disastrous, since it will drastically increase the time it takes to parse a
sentence in any computational implementation.

The solution is apparent from the diagram shown in Figure 1: the authors draw a
box around the lexical meaning and the two argument-adding meaning constructors,
indicating that these meaning constructors are to be combined first. This would
indeed reduce the number of spurious ambiguities produced, in this case from
twenty to three. But there is actually no way of doing this in standard LFG+Glue.
In this paper, we provide a general means of enforcing just such a ‘boxing off’.

3 Proof-structure

In brief, the solution to all of the problems presented above is to control the structure
of the Glue proofs, so as to control the order of composition. For all four, we require
some meaning constructors to combine before others, or to the exclusion of others.
In other words, some meaning constructors should be ‘boxed off’, as in Figure 1.
As mentioned above, existing proposals have achieved this aim via additions to
the linear logic (Gotham 2019, 2021), or via constraints on the proof algorithm
(Crouch and van Genabith 1999). We propose a different solution, exploiting the
LFG projection architecture and introducing a new level of representation which
can be used to enforce constraints on the structure of Glue proofs. We call this level
of representation proof-structure.

150



Proof-structure is not a level of representation for proofs: the proof itself remains
an epiphenomenon – merely the process by which we arrive at a meaning, not a
part of the linguistic representation itself. Rather, proof-structure can be seen as
representing the grammatically-encoded scopal structure of a sentence: it is a level
of representation at which we can express constraints on what kinds of proofs
are admitted by the grammar, by grouping together meaning constructors that ‘go
together’ to the exclusion of others, but this underspecifies the form of the actual
proof(s) involved. Formally speaking, proof-structure is a tree, where each sub-
tree corresponds to a sub-proof. The nodes in the tree are (sets of) premises (i.e.
meaning constructors), and each meaning constructor in a mother node is obtained
from a proof which makes use of exactly one meaning constructor from each of its
daughters. Notice again that the structure underspecifies the actual proof(s), since
we allow n-ary branching, whereas proof rules are generally at most binary.

A schematic proof-structure is shown in (19):

(19) • =

{
[meaning constructor7],
[meaning constructor8]

}

{
[meaning constructor1]

}
• =

{
[meaning constructor5],
[meaning constructor6]

}

{
[meaning constructor2]

} {
[meaning constructor3]

} {
[meaning constructor4]

}
We adopt the convention of suppressing set brackets when the sets are singletons,
so meaning constructors contributed from the initial parse (be it lexically or from an
annotated phrase-structure rule) will appear as terminal nodes in proof-structures,
without surrounding set brackets (shown greyed out in (19)). Higher nodes in the
tree consist of sets of meaning constructors obtainable by combining their daughters.
These mother nodes can be multi-member sets because there can be multiple ways
of combining their daughter meaning constructors, and we want to record those
ambiguities and propagate them up the tree. However, in many cases in this paper we
simply represent these nodes as bullets (•), since what is important is the structure
they impose, rather than their content.

Crucially, we require that the proofs by which mother nodes are produced are
complete, in the sense that there are no undischarged hypotheses. This has the effect
that each sub-tree in proof-structure is a scope island: quantifier scoping in Glue
involves hypothetical reasoning, and by limiting the span over which such reasoning
is allowed to occur, we also limit the potential domains of scopal interaction.

Proof-structure is connected to the LFG architecture by a function γ,6 projected
from c-structure. By projecting proof-structure from c-structure, we maintain access

6The label γ is essentially arbitrary, but we intend it to be vaguely mnemonic for ‘Glue’ and/or
‘Girard’, for Jean-Yves Girard, the inventor of linear logic (Girard 1987).

151



to configurational information that is lost at f-structure but which may be relevant to
determining scope (in the case of modifier scope, for example), i.e. the “relationship
between c-structure and the semantics that is not mediated by f-structure” mentioned
by Andrews and Manning (1999, 9).

Lexically contributed meaning constructors are introduced as daughters of
their c-structure pre-terminal’s proof structure. This is written in lexical entries as
follows:

(20) ∗̂γ � [meaning constructor]

In words, this says that this node’s mother (i.e. the pre-terminal node dominating
the lexical item) has a proof-structure which immediately dominates (�) whatever
meaning constructor is being introduced.7

Phrase-structure rules will now bear annotations describing their contribution to
proof-structure as well as the other levels of representation in the parallel projection
architecture. In the default case, all phrase-structure rules will simply bear the
annotation ∗̂γ = ∗γ , equating mother and daughter’s proof-structures. For example,
the IP rule in English might look like this:

(21) IP → NP
(↑ SUBJ) = ↓

∗̂γ = ∗γ

I′

↑ = ↓
∗̂γ = ∗γ

If we add this annotation to every right-hand element in every phrase-structure rule,
we will obtain a totally flat proof-structure for every sentence. This is our baseline,
and corresponds to the ‘vanilla’ LFG+Glue position: there are no scope islands and
so no constraints on the order of composition. But we now also have the ability
to describe a more articulated proof-structure, which means we can selectively
interrupt this flat structure to enforce the constraints we need in order to solve the
problems discussed in Section 2.

4 Solutions to the problems

4.1 Modifier scope

To enforce the required scope ordering for English pre-nominal adjectives, we
annotate the relevant phrase-structure rule as follows:

(22) N → Âdj
↓ ∈ (↑ ADJ)
∗̂γ = ∗γ

N
↑ = ↓
∗̂γ � ∗γ

That is, the proof-structure for the N head is made a daughter of the mother N’s
proof-structure, rather than being identified with it. This has the effect that things

7Once again, this should really be the set containing the meaning constructor in question, but we
suppress set brackets around singleton sets.

152



N: n1

Âdj: a1
∗̂γ = ∗γ

trustworthy

N: n2

∗̂γ � ∗γ

Âdj: a2
∗̂γ = ∗γ

former

N: n3

∗̂γ � ∗γ

chairman

• n1γ , a1γ

λP.λx.trustworthy(x) ∧ P (x) :
(ec ⊸ tc) ⊸ ec ⊸ tc

• n2γ , a2γ

λP.λx.former(P (x)) :
(ec ⊸ tc) ⊸ ec ⊸ tc

• n3γ

λx.chairman(x) :
ec ⊸ tc

Figure 2: C-structure and proof-structure for trustworthy former chairman

below the nominal head must be composed before things above, so that adjectives
closer to the head will have their meanings applied before adjectives further away.
In other words, it enforces a scope order based on c-structure. Let us see how this
works.

Assuming the following lexical entries, we obtain the c-structure and proof-
structure shown in Figure 2 for the phrase trustworthy former chairman.8

(23) trustworthy Âdj (↑ PRED) = ‘trustworthy’
%N = (ADJ ∈ ↑)
∗̂γ � λPλx.trustworthy(x) ∧ P (x) :

(e%N ⊸ t%N ) ⊸ e%N ⊸ t%N

(24) former Âdj (↑ PRED) = ‘former’
%N = (ADJ ∈ ↑)
∗̂γ � λPλx.former(P (x)) :

(e%N ⊸ t%N ) ⊸ e%N ⊸ t%N

(25) chairman N (↑ PRED) = ‘chairman’
∗̂γ � λx.chairman(x) : e↑ ⊸ t↑

As we can see, the proof-structure node corresponding to the middle N node, i.e. n2γ ,
is dominated by the proof-structure node corresponding to the higher N node, n1γ .
The effect of this is that the meanings for former and chairman must combine with
each other before they combine with trustworthy, since their meaning constructors
are dominated by n2γ while trustworthy’s is not. Thus, we obtain the correct,
c-structure-mediated scoping, where the meaning of the phrase is (26a), not (26b).

(26) a. ✓trustworthy(former(chairman))
b. ✗former(trustworthy(chairman)).

Notice that by adding the annotation which creates an articulated proof-structure
to the phrase-structure rule in (22), we apply this analysis to all cases of pre-nominal

8Here and throughout we use mnemonic labels for the appropriate f-structures in the linear logic
types of meaning constructors.

153



adjective modification, including those involving intersective adjectives where order
of combination is immaterial. That is, the proof-structure for trustworthy Scottish
chairman looks identical to that for trustworthy former chairman, and similarly
requires that the meanings of Scottish and chairman combine with each other before
combining with trustworthy. Although there is no theoretical reason to enforce
such an ordering, there is no reason to avoid it either, and in fact a good practical
reason to prefer it: as mentioned above, generating spurious ambiguities adds to the
difficulty of the computational task involved in parsing. So the analysis presented
here produces both theoretical and practical gains – it prevents us from deriving
some unattested readings, and it also eliminates some spurious ambiguity.

4.2 Scope freezing

As scope freezing illustrates, sometimes we do not want proof-structure to simply
recapitulate c-structure, but rather add structure which is not present elsewhere. But
this is straightforward to do as well; for the English double-object construction, for
example, we add the following annotations to the relevant phrase-structure rule:

(27) V′ → V
↑=↓

∗̂γ � ∗γ

NP
(↑ OBJ) = ↓
∗̂γ = ∗γ

NP
(↑ OBJθ) = ↓

∗̂γ � ∗γ

This adds a new level of proof-structure below the V′ proof-structure, which contains
the meaning constructors contributed by the verb and by the second object.9 The
first object, though, has the same proof structure as the V′, and so its meaning
constructors are in the higher part of the proof-structure. This means that the first
object will always outscope the second, as desired. To illustrate, the c-structure and
proof-structure for Hilary gave a student every grade are shown in Figure 3.

4.3 Scope islands

Since quantifiers cannot scope outside of the proof-structure node they appear
under, we have a straightforward way of enforcing scope islands: we simply add
articulation to the proof-structure at the desired location. For example, we could
make all CP COMPs scope islands by adding the following annotations to the relevant
phrase-structure rule:

(28) V′ → V
↑ = ↓

∗̂γ = ∗γ

CP
(↑ COMP) =↓

∗̂γ � ∗γ
9We assume there is a similar ‘minimal solution’ constraint on proof-structure as is standard

elsewhere in LFG, so that, given the constraints in (27), a proof-structure with one daughter that
merges the proof-structures of the V and second NP is preferred to one with two distinct daughters
that keeps them apart. If we actually do need two distinct proof-structures here, we would need to
explicitly differentiate them – e.g. by making use of a local name (Crouch et al. 2017) for one and
stating that the other is not equal to it.

154



IP
:i
p

N
P:

n
p
1

∗̂ γ
=

∗ γ

H
ila

ry

I′

∗̂ γ
=

∗ γ

V
P

∗̂ γ
=

∗ γ

V
′

∗̂ γ
=

∗ γ

V
:v

∗̂ γ
�

∗ γ

g a
ve

N
P:

n
p
2

∗̂ γ
=

∗ γ

a
st

ud
en

t

N
P:

n
p
3

∗̂ γ
�

∗ γ

ev
er

y
gr

ad
e

•
ip

γ
,n

p
1
γ
,n

p
2
γ
=

a
(y
,s
tu

d
e
n
t(
y
),
e
v
e
ry

(z
,g

ra
d
e
(z
),
g
iv
e
(h

il
a
ry

,y
,z
))
)
:
t f

h
il
a
ry

:
e h

λ
R
.λ
S
.a
(y
,R

(y
),
S
(y
))

:
(e

s
⊸

t s
)
⊸

∀α
(e

s
⊸

t α
)
⊸

t α

λ
x
.s
tu

d
e
n
t(
x
)
:

e s
⊸

t s

•
v γ
,n

p
3
γ
=

λ
x
.λ
y
.λ
z
.g
iv
e
(x
,y
,z
)
:

e h
⊸

e s
⊸

e g
⊸

t f

λ
R
.λ
S
.e
v
e
ry

(z
,R

(z
),
S
(z
))

:
(e

g
⊸

t g
)
⊸

∀β
(e

g
⊸

t β
)
⊸

t β

λ
x
.g
ra

d
e
(x
)
:

e g
⊸

t g

λ
x
.λ
y
.e
v
e
ry

(z
,g

ra
d
e
(z
),
g
iv
e
(x
,y
,z
))

:
e h

⊸
e s

⊸
t f

Fi
gu

re
3:

C
-s

tr
uc

tu
re

an
d

pr
oo

f-
st

ru
ct

ur
e

fo
rH

ila
ry

ga
ve

a
st

ud
en

te
ve

ry
gr

ad
e

•
=

a
(y
,w

a
rd

e
n
(y
),
th

in
k
(y
,e
v
e
ry

(x
,p

ri
so

n
e
r(
x
),
e
sc
a
p
e
(x
))
))

:
t t

λ
R
.λ
S
.a
(y
,R

(y
),
S
(y
))

:
(e

w
⊸

t w
)
⊸

∀β
[(
e w

⊸
t β
)
⊸

t β
]

λ
x
.w

a
rd

e
n
(x
)
:

e w
⊸

t w

λ
p
.λ
x
.t
h
in
k
(x
, p
)
:

t e
⊸

e w
⊸

t t

•

λ
R
.λ
S
.e
v
e
ry

(x
,R

(x
),
S
(x
))

:
(e

p
⊸

t p
)
⊸

∀α
[(
e p

⊸
t α
)
⊸

t α
]

λ
x
.p
ri
so

n
e
r(
x
)
:

e p
⊸

t p

λ
x
.e
sc
a
p
e
(x
)
:

e p
⊸

t e

=
e
v
e
ry

(x
,p

ri
so

n
e
r(
x
),
e
sc
a
p
e
(x
))

:
t e

Fi
gu

re
4:

Pr
oo

f-
st

ru
ct

ur
e

fo
rA

w
ar

de
n

th
in

ks
ev

er
y

pr
is

on
er

es
ca

pe
d

155



The proof-structure for A warden thinks every prisoner escaped would then be as
shown in Figure 4. As can be seen, the two quantifiers appear under different nodes,
and therefore cannot interact. This means that each of the mother nodes is only a
singleton set, containing the one reading shown.

Of course, complement clauses are not always islands; as discussed above, this
depends on so far poorly understood interactions between embedding verbs and
embedded quantifiers. Formally, such dependency is no problem, however: we can
make the added articulation in proof structure dependent on the presence/absence
of other features. For example, let us assume that there is an s-structure feature
SCOPEISLAND, whose value is + when the combination of embedding verb and
quantifier produces such an island, and − when it does not. Then we can have a
more complex CP-introducing rule, which only creates an island when the value of
the CP’s SCOPEISLAND feature is +:

(29) V′ → V
↑ = ↓

∗̂γ = ∗γ

CP
(↑ COMP) =↓{

∗̂γ = ∗γ
∣∣∣∣ ∗̂γ � ∗γ
(↓σ SCOPEISLAND) =c +

}
In actual fact, we will probably need something more fine-grained, if, for example,
some quantifiers can escape such an island at the same time as others in the same
clause cannot. We reserve judgement until the facts can be better established; our
goal here is merely to illustrate that we now have the formal tools required to
describe such an island.

4.4 Sublexical meanings

For the sublexical meanings problem, we need to ‘box off’ the lexical item itself
before it enters the larger semantic composition. We achieve this by making ref-
erence to the proof-structure of the c-structure terminal node containing the word.
That is, in lexical entries, sublexical meanings are made daughters of ∗γ rather
than of ∗̂γ . The new version of the lexical entry for crushed is shown below. Note
that we must also connect the proof-structure of the terminal node to the larger
proof-structure, which is achieved by the second line of (30) – this makes the lexical
proof-structure a daughter of the pre-terminal node’s proof-structure, thus ensuring
that all sublexical material is assembled first.10

10Note that the passive meaning constructor is made a daughter of ∗̂γ like other normal meaning
constructors, rather than a daughter of ∗γ like other sublexical ones. This is done for alignment with
Asudeh et al.’s (2014) diagram in Figure 1, where they box off the meaning constructors contributed
by the valency templates and the lexical meaning, but leave the contribution of the passive outside of
the box. One would need to consider the empirical facts to decide whether it was ever necessary for
the quantification over the implicit Agent introduced by the passive meaning to scope outside of the
lexical meaning, as this permits, or whether it could be added to the set of sublexical meanings like
the others.

156



•

Kim was last night @PASSIVE •

crushed @AGENT @PATIENT

Figure 5: Proof-structure for Kim was crushed last night

(30) crushed V (↑ PRED) = ‘crush’
∗̂γ � ∗γ
@AGENT

@PATIENT

@PASSIVE

∗γ � λe.crush(e) : v↑ ⊸ t↑

(31) AGENT :=
∗γ � λP.λx.λe.P (e) ∧ agent(e, x) :

(v↑ ⊸ t↑) ⊸ e(↑σARG1) ⊸ v↑ ⊸ t↑

(32) PATIENT :=
∗γ � λP.λx.λe.P (e) ∧ patient(e, x) :

(v↑ ⊸ t↑) ⊸ e(↑σARG2) ⊸ v↑ ⊸ t↑

(33) PASSIVE :=
(↑ VOICE) = PASSIVE(
∗̂γ � λP.∃x[P (x)] : (e(↑σARG1) ⊸ t↑) ⊸ t↑

)
Figure 5 shows a schematic version of the proof-structure for the sentence Kim

was crushed last night which this lexical entry gives rise to – for readability, we omit
the details of the meaning constructors, but they are the same as those in Figure 1.
As we can see, the valency templates and the lexical meaning form a sub-proof, and
so their meanings are combined first. This reduces the number of proofs for the
sentence as a whole from twenty to three – and if the passive meaning constructor
were also included in the set of sublexical meanings, the number of proofs would
be reduced to just one.11

11Obviously this approach is limited to decomposed meanings below the level of the word – it will
not carry over to e.g. complex predicates (although our proposal should help with the overgeneration
problem mentioned by Lowe 2015, 439 in his LFG+Glue analysis of complex predicates).

157



∗ ∗ ∗

In summary, this section has shown how adding a notion of articulation to Glue
proofs, whereby certain sets of meaning constructors are combined before others,
enables us to find straightforward solutions to several theoretical and practical
problems. We feel that using a new projection in the LFG architecture for this
purpose is quite natural, and fits LFG’s modular philosophy in that we do not need
to change the workings of the Glue Semantics component itself.

One concern might be that the way we have presented our solution so far makes
it seem quite procedural: certain proofs are finished ‘before’ others. However, this
can be understood entirely metaphorically, and proofs can be processed in parallel.
In the next section, we describe our approach to implementing the current proposal
computationally, and show how this enables us to maintain a declarative rather than
procedural view of parsing.

5 Implementation

The intuition behind our work – and as far as we know all previous work on
restricting scope ambiguities in Glue semantics – is that we need to restrict the
order in which premises can combine. As mentioned above, previous work has
achieved this by either changing the logic (by adding modalities) or changing the
proof algorithm. By contrast, we keep the logic and the proof system as is, and
instead control the way proofs are built by using the projection architecture to gather
premises into groups, where each group is then processed just like a standard Glue
proof. That is, there is nothing special in the way the meaning of every prisoner
escaped is composed from the words every, prisoner and escaped in the bottom
right sub-tree of Figure 4, nor in the way that, once composed, that meaning then
combines with the meanings of a, warden and thinks to yield the overall meaning of
the sentence.

As a result of this, existing tools like the Glue Semantics Workbench (GSW:
Meßmer and Zymla 2018) can be used off the shelf. While we have not attempted to
implement our theory in XLE+Glue (Dalrymple et al. 2020), we have implemented
it in a setting where meaning constructors arise from the interpretation of dependency
parses rather than LFG structures (cf. Gotham and Haug 2018). In this setting, all
that is needed is a script that controls which groups of premises are sent to the prover
together: this is done by chopping the dependency tree into sub-trees according to
which meaning constructors belong together in the same sub-proof, following rules
that we provide. In the XLE+Glue setting it would be necessary to recursively build
proof-structure trees according to the dominance constraints given by the annotated
c-structure rules and lexical entries, then send each set of sibling nodes to the prover
separately. Two issues arise: First, how can we prove non-atomic proof goals?
Second, if we are to send sets of sibling nodes to the prover, does that impose an
order on the proofs? If possible we want to avoid having to compute the value of a

158



non-leaf node based on its daughters before it is sent to the prover with its siblings.
As we will see, both issues require us to know in advance what the proof goal is.

The first issue arises because the Hepple-Lev algorithm (Hepple 1996, Lev
2007) that underlies the Glue Semantics Workbench is only complete with respect
to proofs of atomic formulae (i.e. if the formula to be proved contains ‘⊸’ we
are not guaranteed to find a proof even if there is one). However, in cases like
trustworthy former chairman, shown in Figure 2, the sub-proofs we require should
end in ec ⊸ tc. And although in this particular (simple) case GSW does in fact find
such a proof from the two premises ec ⊸ tc and (ec ⊸ tc) ⊸ ec ⊸ tc, this is not
the case in general for non-atomic goals.

If we know in advance what the proof goal should be, we can work around
this problem by supplying an artificial meaning constructor that consumes the
intended goal and produces an atomic resource; in the case at hand it would be
GOAL : (ec ⊸ tc) ⊸ G. GSW then straightforwardly returns the proof that we
represent in natural deduction format in (34) for the sub-proof of former chairman:

(34) λPλx.former(P (x)) :
(ec ⊸ tc) ⊸ ec ⊸ tc

λx.chairman(x) :
ec ⊸ tc

λx.former(chairman(x)) :
ec ⊸ tc

GOAL :
(ec ⊸ tc) ⊸ G

GOAL(λx.former(chairman(x))) : G

From (34) it is easy to extract the semantic resource we want by removing the
GOAL predicate and using the goal type we need, to yield the meaning constructor
λx.former(chairman(x)) : (ec ⊸ et).

Moreover, if we know what the proof goal is, we can produce proof-structures
decorated with explicit goal types for the non-terminal nodes. The proof-structure
from Figure 2 could then be represented as (35) without any proofs being carried
out:

(35) • = : ec ⊸ tc

λPλx.trustworthy(x) ∧ P (x) :
(ec ⊸ tc) ⊸ ec ⊸ tc

• = : ec ⊸ tc

λPλx.former(P (x)) :
(ec ⊸ tc) ⊸ ec ⊸ tc

• = : ec ⊸ tc

λx.chairman(x) :
ec ⊸ tc

This suggests a solution to the second issue. As we noted above, the tree format
in (35) may suggest that we first prove the meaning of former chairman and then

159



plug the result into a new proof which also involves the meaning constructor of
trustworthy. But if we already know that the meaning of trustworthy combines with
something of the linear logic type ec ⊸ tc, , we do not have to proceed in this way,
but can perform the required proof with a placeholder meaning constructor of the
form shown in (36):

(36) PLACEHOLDER : ec ⊸ tc.

This proof can be performed in parallel with the proof in (34) and yields (37):

(37) λx.trustworthy(x) ∧ PLACEHOLDER(x) : ec ⊸ tc

Given that the type of PLACEHOLDER was set to the goal type of the proof in
(34), we can – once we are done with all proofs – replace it with the meaning side
of the goal from (34) (removing the GOAL wrapper). This yields (38), the correct
meaning constructor for the whole phrase:

(38) λx.trustworthy(x) ∧ former(chairman(x)) : ec ⊸ tc

Aside from the performance gains from parallelisation, this procedure also
serves to reduce the number of proofs that we must compute in cases where one or
more sub-trees are ambiguous, i.e. have several proofs yielding several meaning
sides (which evidently all have the same linear logic type). Consider a situation
where we have one sub-proof inside another, and both sub-trees contain three
quantifiers. Such structures are not unexpected in a Glue setting. They could in fact
easily occur in a more detailed representation of a sentence like A guard thinks every
prisoner escaped if an event and time variable were also included.12 Computing
proofs corresponding to all possible permutations of the six quantifiers would yield
6! = 720 proofs. By boxing off each clause, we reduce the space of readings to
3! × 3! = 36 readings. But to get those 36 readings, we only need to perform 6
proofs for each clause = 12 proofs.

We have seen that the key both to proving non-atomic goals and to achieving
parallelisation is to know what the goal type of a given proof-structure node should
be. For the system to know this without actually inspecting the premises, we need
to state proof goals along with the dominance constraints for the proof structure.
In many cases, this is easily done. For example, we can augment the pre-nominal
adjective rule in (22) as follows to provide the goal types used in (35):

(39) N → Âdj
↓ ∈ (↑ ADJ)
∗̂γ = ∗γ

N
↑ = ↓
∗̂γ � ∗γ

π2(∗γ) = e↑ ⊸ t↑

12It is part of the design of Glue that we do not look at the meaning side when computing scopes
and hence it is easily possible that we end up computing six permutations of the three quantifiers in a
sentence with three existentially quantified variables for individuals, times and events, even if they are
all semantically equivalent.

160



Here we treat a meaning constructor as a pair consisting of a lambda expression and
a linear logic type, and use the projection function π2 to refer to the second member
of that pair, i.e. the type, so that we can then constrain it appropriately.13

In our own implementation this approach generalises, because we use a neo-
Davidsonian semantics in the style of Champollion (2015), where all arguments are
treated semantically as modifiers of verbal meanings. This means that they leave
the same type as they consume, making it straightforward to identify goal types and
state them in the rules. However, as a reviewer points out, it is not trivial to compute
what the type of vγ in Figure 3 is, where we have not used a neo-Davidsonian
semantics. vγ must therefore have the type of a consumer (of the remaining verbal
arguments) rather than a consumee. A discussion of the different possible solutions
here would take us too far afield, and so we leave for future work to determine how
this can be achieved.

6 Conclusion

We have presented four problems for standard LFG+Glue relating to scope: modifier
scope, scope freezing, scope islands, and sublexical meanings. The first three involve
empirical failings – LFG+Glue predicts readings which are unattested. The last is a
largely practical problem – the atomisation of lexical meanings results in a large
number of spurious ambiguities in the Glue proofs. Both kinds of problems are
ultimately of the same nature: namely, Glue is too permissive insofar as it places no
constraints on which scope-taking meanings can interact. The solution is therefore
to provide a means of constraining the order in which meaning constructors can
combine, so that some interactions are ruled out. Unlike previous proposals, our
solution takes advantage of LFG’s modular approach to the grammar, and defines a
new level of the projection architecture, proof-structure, which can be used to ‘box
off’ certain parts of the Glue proof, turning them into their own self-contained sub-
proofs. This means that the Glue Semantics component itself remains unchanged,
and existing tools and analyses can continue to be used. We demonstrated that
proof-structure offers straightforward solutions to the four problems discussed here,
and lastly showed that it can be implemented in such a way that we retain the
declarative status of LFG+Glue. We believe that this offers the least problematic
solution yet to a number of long-standing issues in Glue Semantics.

References

Andrews, Avery D. 2018. Sets, heads and spreading in LFG. Journal of Language
Modelling 6(1), 131–174.

Andrews, Avery D. and Manning, Christopher D. 1999. Complex predicates and
information spreading in LFG. Stanford, CA: CSLI Publications.
13We commit a formal fudge here, since ∗γ is actually a set of meaning constructors; we assume

the definition of π2 is modified in such a way as to make it distributive.

161



Asudeh, Ash. 2005. Relational nouns, pronouns, and resumption. Linguistics and
Philosophy 28(4), 375–446.

Asudeh, Ash. 2022. Glue Semantics. Annual Review of Linguistics 8, 321–341.
Asudeh, Ash and Giorgolo, Gianluca. 2012. Flexible composition for optional and

derived arguments. In Miriam Butt and Tracy Holloway King (eds.), Proceedings
of the LFG’12 Conference, pages 64–84, Stanford, CA: CSLI Publications.

Asudeh, Ash, Giorgolo, Gianluca and Toivonen, Ida. 2014. Meaning and valency.
In Miriam Butt and Tracy Holloway King (eds.), Proceedings of the LFG’14
Conference, pages 68–88, Stanford, CA: CSLI Publications.

Barker, Chris. 2022. Rethinking scope islands. Linguistic Inquiry 53(4), 633–661.
Bary, Corien and Haug, Dag. 2011. Temporal anaphora across and inside sentences:

the function of participles. Semantics & Pragmatics 4(8).
Belyaev, Oleg and Haug, Dag. 2014. Pronominal coreference in Ossetic correlative

and the syntax-semantics interface. In Miriam Butt and Tracy Holloway King
(eds.), Proceedings of the LFG’14 Conference, pages 89–109, Stanford, CA:
CSLI Publications.

Campbell, Richard. 2002. Computation of modifier scope in NP by a language-
neutral method. In COLING 2002: the 19th International Conference on Compu-
tational Linguistics.

Champollion, Lucas. 2015. The interaction of compositional semantics and event
semantics. Linguistics and Philosophy 38(1), 31–66.

Crouch, Dick, Dalrymple, Mary, Kaplan, Ronald M., King, Tracy Holloway,
Maxwell III, John T. and Newman, Paula. 2017. XLE documentation. Palo Alto
Research Center (PARC), Palo Alto, CA.

Crouch, Richard and van Genabith, Josef. 1999. Context change, underspecification
and the structure of Glue language derivations. In Mary Dalrymple (ed.), Seman-
tics and syntax in Lexical Functional Grammar, pages 117–189, Cambridge, MA:
MIT Press.

Dalrymple, Mary (ed.). 1999. Semantics and syntax in Lexical Functional Grammar:
the resource logic approach. Cambridge, MA: MIT Press.

Dalrymple, Mary, Lamping, John and Saraswat, Fernando Pereira Vijay. 1999.
Quantification, anaphora, and intensionality. In Mary Dalrymple (ed.), Semantics
and syntax in Lexical Functional Grammar: the resource logic approach, pages
39–90, Cambridge, MA: MIT Press.

Dalrymple, Mary, Lamping, John and Saraswat, Vijay. 1993. LFG semantics via
constraints. In Steven Krauwer, Michael Moortgat and Louis des Tombe (eds.),
Proceedings of the Sixth Conference of the European Chapter of the Association
for Computational Linguistics (EACL 1993), pages 97–105.

Dalrymple, Mary, Lowe, John J. and Mycock, Louise. 2019. The Oxford reference
guide to Lexical Functional Grammar. Oxford: Oxford University Press.

Dalrymple, Mary, Patejuk, Agnieszka and Zymla, Mark-Matthias. 2020. XLE+Glue
– a new tool for integrating semantic analysis in XLE. In Miriam Butt and Ida
Toivonen (eds.), Proceedings of the LFG’20 Conference, pages 89–108, Stanford,

162



CA: CSLI Publications.
Findlay, Jamie Y. 2016. Mapping theory without argument structure. Journal of

Language Modelling 4(2), 293–338.
Findlay, Jamie Y. 2019. Multiword expressions and the lexicon. Ph.D. thesis, Uni-

versity of Oxford.
Findlay, Jamie Y. 2020. Mapping Theory and the anatomy of a lexical entry. In

Miriam Butt and Ida Toivonen (eds.), Proceedings of the LFG’20 Conference,
pages 127–147, Stanford, CA: CSLI Publications.

Girard, Jean-Yves. 1987. Linear logic. Theoretical Computer Science 50(1), 1–102.
Gotham, Matthew. 2019. Constraining scope ambiguity in LFG+Glue. In Miriam

Butt, Tracy Holloway King and Ida Toivonen (eds.), Proceedings of the LFG’19
Conference, pages 111–129, Stanford, CA: CSLI Publications.

Gotham, Matthew. 2021. Approaches to scope islands in LFG+Glue. In Miriam Butt,
Jamie Y. Findlay and Ida Toivonen (eds.), Proceedings of the LFG’21 Conference,
pages 146–166, Stanford, CA: CSLI Publications.

Gotham, Matthew and Haug, Dag T. T. 2018. Glue semantics for Universal Depen-
dencies. In Miriam Butt and Tracy Holloway King (eds.), Proceedings of the
LFG’18 Conference, pages 208–226, Stanford, CA: CSLI Publications.

Haug, Dag T. T. 2008. Tense and aspect for Glue Semantics: the case of participial
XADJs. In Miriam Butt and Tracy Holloway King (eds.), Proceedings of the
LFG’08 Conference, pages 291–311, Stanford, CA: CSLI Publications.

Hepple, Mark. 1996. A compilation-chart method for linear categorial deduction. In
COLING ’96: Proceedings of the 16th conference on computational linguistics,
volume 1, pages 537–542.

Kokkonidis, Miltiadis. 2008. First-order Glue. Journal of Logic, Language and
Information 17(1), 43–68.

Larson, Richard K. 1990. Double objects revisited: reply to Jackendoff. Linguistic
Inquiry 21(4), 589–632.

Lev, Iddo. 2007. Packed computation of exact meaning representations. Ph.D. thesis,
Stanford University, Stanford, CA.

Lowe, John J. 2015. Complex predicates: an LFG+glue analysis. Journal of Lan-
guage Modelling 3(2), 413–462.

Meßmer, Moritz and Zymla, Mark-Matthias. 2018. The Glue Semantics Workbench:
a modular toolkit for exploring linear logic and Glue Semantics. In Miriam Butt
and Tracy Holloway King (eds.), Proceedings of the LFG’18 Conference, pages
249–263, Stanford, CA: CSLI Publications.

Przepiórkowski, Adam. 2017. A full-fledged hierarchical lexicon in LFG: the
FrameNet approach. In Victoria Rosén and Koenraad De Smedt (eds.), The
very model of a modern linguist: in honor of Helge Dyvik, Bergen Language and
Linguistics Studies, No. 8, pages 202–219, Bergen: University of Bergen.

163


	Introduction
	The problems
	Modifier scope
	Scope freezing
	Scope islands
	Sublexical meanings

	Proof-structure
	Solutions to the problems
	Modifier scope
	Scope freezing
	Scope islands
	Sublexical meanings

	Implementation
	Conclusion



