
Filling gaps with Glue

Adam Przepiórkowski1,2 and Agnieszka Patejuk1

1Institute of Computer Science, Polish Academy of Sciences
2Faculty of Philosophy, University of Warsaw

Proceedings of the LFG’23 Conference

Miriam Butt, Jamie Y. Findlay and Ida Toivonen (Editors)

2023

PubliKon

lfg-proceedings.org

https://lfg-proceedings.org

Abstract

LFG currently lacks an analysis of gapping at the syntax-semantics inter-
face. The aim of this paper is to fill this gap. We present two codescriptive
approaches that do not assume empty constituents: one employing standard
Glue but relying on a particular approach to event semantics, and another
compatible with any approach to semantics but relying on a particular ap-
proach to Glue at the syntax-semantics interface.

1 Introduction

Consider the simple example of gapping (Ross 1970) in (1) and its intended neo-
Davidsonian (Davidson 1967; Castañeda 1967; Parsons 1990) representation in (2),
where the constants m, l, h, and b refer to Marge, Lisa, Homer, and Bart, respec-
tively.† The representation in (2) reflects the fact that (1) refers to two seeing events,
not just one.1

(1) Marge saw Lisa and Homer – Bart.
(2) [∃e. see(e) ∧ agent(e, m) ∧ theme(e, l)] ∧

[∃e. see(e) ∧ agent(e, h) ∧ theme(e, b)]
The first bracketed conjunct in (2) faithfully represents the first clause of (1)

(i.e., Marge saw Lisa). The challenge for any semantic theory of gapping is to –
compositionally – obtain the second bracketed conjunct in (2) as the representation
of the gapped clause in (1) (i.e., Homer – Bart), despite the missing verb.

Derivational approaches rely on there being a stage of derivation in which the
eventually gapped clause does contain the lexical verb, i.e., a stage that can be rep-
resented as in (3).
(3) Marge saw Lisa and Homer saw Bart.
Subsequently, the second occurrence of saw is deleted or moved across-the-board
out of the second conjunct. However, given that a copy or a trace of the verb re-
mains in the gapped clause, deriving the right meaning representation of gapping
is assumed to be straightforward in derivational syntax. See Park 2019: §4.2 for
a useful overview of such approaches and discussion of problems that they face.

On the other hand, LFG eschews empty constituents unless there are good syn-
tactic reasons to postulate them (Bresnan et al. 2016: §9.5), so the derivational
approach is not applicable, and no other LFG-based account of the semantics of
gapping has been proposed so far.

The aim of this paper is to propose two proof-of-concept codescriptive ap-
proaches to gapping relying on LFG syntax and Glue semantics (Dalrymple 1999;
Asudeh 2022). Neither assumes empty constituents and both rely on the syn-
tactic analysis of Patejuk & Przepiórkowski 2017. The first approach, presented
in §2, employs standard Glue mechanisms, but it crucially relies on Champollion’s

†We are grateful to LFG 2023 reviewers and audience for useful feedback.
1In this and other examples, the gap is explicitly marked with ‘–’.

223

(2015) compositional treatment of event semantics. The second approach, presented
in §3, is compatible with any meaning representation language, but it relies on the
XLE+Glue approach of Dalrymple et al. 2020 and on the possibility – currently
not implemented within XLE (Crouch et al. 2011) – of treating certain attributes as
“deeply distributive”, i.e., on par with pred. Conclusions are presented in §4.

2 An Event Semantics Approach

Glue is resource-sensitive, so the semantic representation see introduced by the
predicate saw in (1) must be used exactly once in the glue proof. The question is
how to obtain the representation in (2), repeated below, where see occurs twice.
(2) [∃e. see(e) ∧ agent(e, m) ∧ theme(e, l)] ∧

[∃e. see(e) ∧ agent(e, h) ∧ theme(e, b)]
A somewhat similar problem occurs when a dependent introduces a resource

that is shared between conjoined predicates, as in (4)–(5). The semantic represen-
tation of Bart, i.e., b, occurs twice in (5). The standard solution in such cases is
that the representation of the shared dependent, b, is an argument of the represen-
tation of the coordination walked and whistled given in (6), resulting in the desired
representation (5), as shown in (7).
(4) Bart walked and whistled.
(5) [∃e. walk(e) ∧ agent(e, b)] ∧

[∃e. whistle(e) ∧ agent(e, b)]
(6) walked and whistled ⇝

λx. [∃e. walk(e) ∧ agent(e, x)] ∧
[∃e. whistle(e) ∧ agent(e, x)]

(7) Bart walked and whistled ⇝
[λx. [∃e. walk(e) ∧ agent(e, x)] ∧

[∃e. whistle(e) ∧ agent(e, x)]](b) β-reduction
⇝ (5)

For a similar solution to work in gapping, the representation of the overt verb
introduced in the first clause in (1) should be factored out and become an argument
of the representation of the rest of the coordination, as schematically shown in (8):
(8) [λf.[∃e. f(e) ∧ agent(e, m) ∧ theme(e, l)] ∧

[∃e. f(e) ∧ agent(e, h) ∧ theme(e, b)]](see) β-reduction
⇝ (2)

We flesh out this idea by building on Champollion’s (2015) approach to event se-
mantics (see §2.1) and on Patejuk & Przepiórkowski’s (2017) LFG analysis of the
syntax of gapping (see §2.2). An XLE+Glue (Dalrymple et al. 2020) implementa-
tion of this analysis is briefly described in §2.3, while §2.4 discusses the limitations
of this approach.

224

2.1 Semantics

Champollion (2015) argues that, instead of the usual existential closure at the level
of the clause, the existential quantifier which binds the event variable should be
introduced by the verb itself, as in (9).
(9) saw ⇝ λf. ∃e. see(e) ∧ f(e)
Dependents are analysed as semantic modifiers, as in (10)–(11), combining with
verbs as in (12)–(13).
(10) Margeagent ⇝ λV.λf. V (λe. agent(e, m) ∧ f(e))
(11) Lisatheme ⇝ λV.λf. V (λe. theme(e, l) ∧ f(e))
(12) saw Lisa ⇝ [(11)]((9)) β-reduction

⇝ λf. ∃e. see(e) ∧ theme(e, l) ∧ f(e)
(13) Marge saw Lisa ⇝ [(10)]((12)) β-reduction

⇝
λf. ∃e. see(e) ∧ theme(e, l) ∧ agent(e, m) ∧ f(e)

The final relevant ingredient of Champollion 2015 is the event closure in (14) (re-
placing the usual existential closure), leading to the final representation of the sen-
tence Marge saw Lisa in (15).
(14) [closure] ⇝ λe. true(e)
(15) Marge saw Lisa (after closure) ⇝ [(13)]((14)) β-reduction

⇝
∃e. see(e) ∧ theme(e, l) ∧ agent(e, m) ∧ true(e)

Given that the predicate true is always true, (15) is equivalent to the first bracketed
conjunct in the representation of (1) given in (2) (both repeated below).
(1) Marge saw Lisa and Homer – Bart.
(2) [∃e. see(e) ∧ agent(e, m) ∧ theme(e, l)] ∧

[∃e. see(e) ∧ agent(e, h) ∧ theme(e, b)]
For this approach to work in the analysis of gapping, semantic representations

of verbs such as (9) must be split:
(16) saw ⇝ λV. λf. V (λe. see(e) ∧ f(e))
(17) λf. ∃e. f(e)
We assume that lexical verbs introduce two meaning constructors (MCs) corre-
sponding to meaning representations in (16)–(17), while the gapped clause con-
structionally introduces a constructor corresponding to (17). In the case of the run-
ning example (1), when this MC combines with the agent Homer and the theme
Bart, see (18)–(19), the representation of the gapped clause is (20):
(18) Homeragent ⇝ λV.λf. V (λe. agent(e, h) ∧ f(e))
(19) Barttheme ⇝ λV.λf. V (λe. theme(e, b) ∧ f(e))
(20) Homer – Bart (initial) ⇝ [(18)]([(19)]((17))) β-reduction

⇝
λf. ∃e. theme(e, b) ∧ agent(e, h) ∧ f(e)

Similarly, (21) is the initial representation of the first clause, utilizing only the MC
corresponding to (17) (without (16)).

225

(21) Marge saw Lisa (initial) ⇝ [(10)]([(11)]((17))) β-reduction
⇝

λf. ∃e. theme(e, l) ∧ agent(e, m) ∧ f(e)
Assuming the standard approach to the semantics of coordination (Partee &

Rooth 1983; Dalrymple et al. 2019: §16.7), (22) is the representation of and in the
running example.
(22) and ⇝ λV1.λV2.λf. V1(f) ∧ V2(f)
Conjoining (21) and (20) results in (23):

(23) Marge saw Lisa and Homer – Bart (initial) ⇝ [(22)]((21))((20)) β-reduction
⇝

λf. [∃e. theme(e, l) ∧ agent(e, m) ∧ f(e)] ∧
[∃e. theme(e, b) ∧ agent(e, h) ∧ f(e)]

Applying the representation of the verb in (16) to the representation of coordination
in (23) results in (24):
(24) Marge saw Lisa and Homer – Bart (before closure) ⇝ [(16)]((23)) β-reduction

⇝
λf. [∃e. theme(e, l) ∧ agent(e, m) ∧ see(e) ∧ f(e)] ∧

[∃e. theme(e, b) ∧ agent(e, h) ∧ see(e) ∧ f(e)]
This derivation is slightly more complex than the schematic derivation in (8), be-
cause in this derivation the representation of the verb, (16), is the functor rather than
the argument. Applying (24) to the closure representation in (14) results in (25),
which is equivalent to the desired representation (2) (repeated below again) of the
running example.

(25) Marge saw Lisa and Homer – Bart (after closure) ⇝ [(24)]((14)) β-reduction
⇝

[∃e. theme(e, l) ∧ agent(e, m) ∧ see(e) ∧ true(e)] ∧
[∃e. theme(e, b) ∧ agent(e, h) ∧ see(e) ∧ true(e)]

(2) [∃e. see(e) ∧ agent(e, m) ∧ theme(e, l)] ∧
[∃e. see(e) ∧ agent(e, h) ∧ theme(e, b)]

2.2 Syntax–Semantics Interface

On the analysis of gapping in Patejuk & Przepiórkowski 2017, c2 in (26) is a partial
f-structure of the gapped clause in (1).
(26)

c2

subj
[
pred ‘Homer’

]
obj

[
pred ‘Bart’

]

A partial representation of the first (source) clause is more complex, as dependents
that are not shared are put in the value of the local attribute, c1 , rather than in the
main f-structure c; see (27).
(27)

c

pred ‘see<subj, obj>’

local c1

subj
[
pred ‘Marge’

]
obj

[
pred ‘Lisa’

]

226

The syntactic rule responsible for gapping is given in (28).
(28) IP → IP1 [Comma IP]* Conj IP

↑=↓ ↓∈↑ ↓∈↑
(↓ local) ∈ ↑

Given that IP1 corresponds to (27), and the last IP to (26), this rule results in (29)
as the f-structure of the running example. Note that, according to this rule, c in (29)
is analysed as a hybrid structure, so that pred distributes to both conjuncts.2

(29)

c

c1

pred ‘see< 1 , 2 >’

subj 1
[
pred ‘Marge’

]
obj 2

[
pred ‘Lisa’

]
, c2

pred ‘see< 3 , 4 >’

subj 3
[
pred ‘Homer’

]
obj 4

[
pred ‘Bart’

]

local c1

conj and

As noted in §2.1, gapped clauses constructionally introduce an existentially

bound event, λf. ∃e. f(e). This means that appropriate meaning constructors (MCs)
must be added in the rule (28), as shown in (30).3

(30) IP → IP1 [Comma IP]* Conj IP
↑=↓ ↓∈↑ ↓∈↑

(↓ local) ∈ ↑ λf. ∃e. f(e) : λf. ∃e. f(e) :
(↓v ⊸ ↓t)⊸ ↓t (↓v ⊸ ↓t)⊸ ↓t

We assume that proper nouns introduce the usual MCs, e.g., m : ↑e for Marge.
Thematic roles are introduced constructionally; for example, in a rule assigning the
structure of a dependent to the subj value of the verb, the dependent is also assumed
to be an agent (perhaps as one of the options) and assigned the following MC:
(31) [agent] ⇝

λx.λV.λf. V (λe. agent(e, x) ∧ f(e)) :
↓e⊸ ((↑v⊸ ↑t)⊸ ↑t)⊸ (↑v⊸ ↑t)⊸ ↑t

These two constructors, m : ↑e and (31), when combined in the analysis of the
running example (1), result in the instantiated MC for the agent Marge in (32),
where c1 refers to the relevant f-structure in (29), and analogously for the theme
Lisa in (33)–(34).
(32) Margeagent ⇝

λV.λf. V (λe. agent(e, m)∧f(e)) : ((c1
v ⊸ c1

t)⊸ c1
t)⊸ (c1

v ⊸ c1
t)⊸ c1

t

(33) [theme] ⇝
λx.λV.λf. V (λe. theme(e, x) ∧ f(e)) :
↓e⊸ ((↑v⊸ ↑t)⊸ ↑t)⊸ (↑v⊸ ↑t)⊸ ↑t

2We have more to say about this when we discuss the second analysis in §3.
3Throughout the paper, we assume the first-order approach to Glue (Kokkonidis 2008), with the

usual basic semantic types e and t, as well as v – the type of events.

227

(34) Lisatheme ⇝

λV.λf. V (λe. theme(e, l) ∧ f(e)) : ((c1
v ⊸ c1

t)⊸ c1
t)⊸ (c1

v ⊸ c1
t)⊸ c1

t

Similarly, the agent Homer and the theme Bart are associated with the MCs given
in (35)–(36); in these cases ↑ instantiates to the f-structure of the gapped clause,
i.e., to c2 .
(35) Homeragent ⇝

λV.λf. V (λe. agent(e, h) ∧ f(e)) : ((c2
v ⊸ c2

t)⊸ c2
t)⊸ (c2

v ⊸ c2
t)⊸ c2

t

(36) Barttheme ⇝

λV.λf. V (λe. theme(e, b) ∧ f(e)) : ((c2
v ⊸ c2

t)⊸ c2
t)⊸ (c2

v ⊸ c2
t)⊸ c2

t

The constructor introduced under the last IP in (30) (the gapped clause) in this
case instantiates to (37) and it combines with MCs for the agent Homer and the
theme Bart in (35)–(36), resulting in the MC (38) corresponding to the gapped
clause.
(37) λf. ∃e. f(e) : (c2

v ⊸ c2
t)⊸ c2

t

(38) λf. ∃e. theme(e, b) ∧ agent(e, h) ∧ f(e) : (c2
v ⊸ c2

t)⊸ c2
t

Lexical verbs introduce the following three MCs – the first one, in (39), cor-
responds to the event closure (cf. (14) in §2.1), while the next two, in (40)–(41),
correspond to the representations of the semantics of verbs (cf. (16)–(17) in §2.1):
(39) saw ⇝ λe. true(e) : ↑v⊸ ↑t

(40) λV. λf. V (λe. see(e)∧f(e)) : ((↑v⊸ ↑t)⊸ ↑t)⊸ (↑v⊸ ↑t)⊸ ↑t

(41) λf. ∃e. f(e) : (%vv⊸%vt)⊸%vt, where %v = (↑ (local))
Note that (41) relies on the variable %v which can resolve to ↑ or (↑ local).

The latter is used in the analysis of gapping: in the running example (1) with the
f-structure in (29), (41) instantiates to (42) and combines with the agent Marge and
the theme Lisa in a way analogous to the gapped clause, resulting in the MC (43)
corresponding to the first conjunct.
(42) saw ⇝ λf. ∃e. f(e) : (c1

v ⊸ c1
t)⊸ c1

t

(43) λf. ∃e. theme(e, l) ∧ agent(e, m) ∧ f(e) : (c1
v ⊸ c1

t)⊸ c1
t

The resulting MCs (43) and (38) for the two conjuncts are arguments to the
instantiation of the standard meaning of and given in (44) (cf. (22) in §2.1); note
that the arguments correspond to conjuncts c1 and c2 , and the result corresponds
to the coordination c.
(44) λV1.λV2.λf. V1(f) ∧ V2(f) :

((c1
v ⊸ c1

t)⊸ c1
t)⊸ ((c2

v ⊸ c2
t)⊸ c2

t)⊸ (cv⊸ ct)⊸ ct

When (44) is applied to the MCs of conjuncts in (43) and (38), the result is (45)
below (cf. (23) in §2.1).
(45) λf. [∃e. theme(e, l) ∧ agent(e, m) ∧ f(e)] ∧

[∃e. theme(e, b) ∧ agent(e, h) ∧ f(e)] : (cv⊸ ct)⊸ ct

228

In the other – idiosyncratic – MC introduced by the verb, (40), ↑ is instantiated
to c, as shown in (46).
(46) saw ⇝ λV. λf. V (λe. see(e) ∧ f(e)) : ((cv⊸ ct)⊸ ct)⊸ (cv⊸ ct)⊸ ct

The MC in (45) is input to the MC in (46), resulting in (47) (cf. (24) in §2.1):
(47) λf. [∃e. theme(e, l) ∧ agent(e, m) ∧ see(e) ∧ f(e)] ∧

[∃e. theme(e, b) ∧ agent(e, h) ∧ see(e) ∧ f(e)] : (cv⊸ ct)⊸ ct

Finally, applying (47) to the closure in (39) instantiated as in (48) results in the final
representation in (49) (cf. (25) and (2) in §2.1).
(48) saw ⇝ λe. true(e) : cv⊸ ct

(49) [∃e. theme(e, l) ∧ agent(e, m) ∧ see(e) ∧ true(e)] ∧
[∃e. theme(e, b) ∧ agent(e, h) ∧ see(e) ∧ true(e)] : ct

2.3 Implementation

The analysis presented above has been computationally verified as an XLE+Glue
(Dalrymple et al. 2020) implementation.

The c-structure tree for the running example (1) (repeated below again) is given
in Figure 1, the simplified f-structure in Figure 2, and the full f-structure in Figure 3.
(1) Marge saw Lisa and Homer – Bart.

CS 4: IP

IP1

DEP

NP

N'

N

Marge

I

saw

DEP

NP

N'

N

Lisa

Conj

and

IP

DEP

NP

N'

N

Homer

DEP

NP

N'

N

Bart

Figure 1: C-structure for (1) generated by the XLE+Glue implementation

Figure 3 illustrates the actual encoding of MCs in XLE+Glue. All such MCs – val-
ues of the attributes glue – are collected and transferred to a linear theorem prover
(Glue Semantics Workbench, GSWB; Meßmer & Zymla 2018). Multiple proofs

229

"Marge saw Lisa and Homer Bart"

'see<[2:Marge], [6:Lisa]>'PRED

'Marge'PRED

[2:Marge]RESOURCE-1GLUE2
SUBJ

'Lisa'PRED

[6:Lisa]RESOURCE-2GLUE6
OBJ

[6:Lisa]RESOURCEARG1

[30:see]RESOURCEARG1

[30:see]RESOURCE
ARG1

[30:see]RESOURCE

ARG2

[30:see]RESOURCEARG1

[30:see]RESOURCE
ARG3

[30:see]RESOURCE-8

[30:see]RESOURCEARG1

[30:see]RESOURCE
ARG1

[30:see]RESOURCE-6

[2:Marge]RESOURCEARG1

[30:see]RESOURCEARG1

[30:see]RESOURCE
ARG1

[30:see]RESOURCE

ARG2

[30:see]RESOURCEARG1

[30:see]RESOURCE
ARG3

[30:see]RESOURCE-3

GLUE

30

'see<[15:Homer], [17:Bart]>'PRED

'Homer'PRED

[15:Homer]RESOURCE-16GLUE15
SUBJ

'Bart'PRED

[17:Bart]RESOURCE-17GLUE17
OBJ

[17:Bart]RESOURCEARG1

[71:see]RESOURCEARG1

[71:see]RESOURCE
ARG1

[71:see]RESOURCE

ARG2

[71:see]RESOURCEARG1

[71:see]RESOURCE
ARG3

[71:see]RESOURCE-13

[15:Homer]RESOURCEARG1

[71:see]RESOURCEARG1

[71:see]RESOURCE
ARG1

[71:see]RESOURCE

ARG2

[71:see]RESOURCEARG1

[71:see]RESOURCE
ARG3

[71:see]RESOURCE-11

[71:see]RESOURCEARG1

[71:see]RESOURCE
ARG1

[71:see]RESOURCE-15

GLUE

71

[30:see]RESOURCEARG1

[30:see]RESOURCE
ARG1

[30:see]RESOURCE

ARG1

[71:see]RESOURCEARG1

[71:see]RESOURCE
ARG1

[71:see]RESOURCE

ARG2

[4:see]RESOURCEARG1

[4:see]RESOURCE
ARG3

[4:see]RESOURCE-10

[4:see]RESOURCEARG1

[4:see]RESOURCE
ARG1

[4:see]RESOURCE

ARG1

[4:see]RESOURCEARG1

[4:see]RESOURCE
ARG2

[4:see]RESOURCE-7

[4:see]RESOURCEARG1

[4:see]RESOURCE-5

GLUE

[30:see]LOCAL4

Figure 2: Simplified f-structure for (1) generated by the XLE+Glue implementation

230

"Marge saw Lisa and Homer Bart"

'see<[2:Marge], [6:Lisa]>'PRED

'Marge'PRED

[2:Marge]RESOURCE
MEANING Marge, TYPE e-1

GLUE
2

SUBJ

'Lisa'PRED

[6:Lisa]RESOURCE
MEANING Lisa, TYPE e-2

GLUE
6

OBJ

[6:Lisa]RESOURCE
eTYPE

ARG1

[30:see]RESOURCE
vTYPE

ARG1

[30:see]RESOURCE
tTYPE

ARG1

[30:see]RESOURCE
tTYPE

ARG2

[30:see]RESOURCE
vTYPE

ARG1

[30:see]RESOURCE
tTYPE

ARG3

[30:see]RESOURCE
MEANING (/x_e.(/V_<<v,t>,t>.(/f_<v,t>.(V((/e_v.(theme(e,x)&f(e)))))))), TYPE t-8

[30:see]RESOURCE
vTYPE

ARG1

[30:see]RESOURCE
tTYPE

ARG1

[30:see]RESOURCE
MEANING [/f_<v,t>.[Ee_v.[f(e)]]], TYPE t-6

[2:Marge]RESOURCE
eTYPE

ARG1

[30:see]RESOURCE
vTYPE

ARG1

[30:see]RESOURCE
tTYPE

ARG1

[30:see]RESOURCE
tTYPE

ARG2

[30:see]RESOURCE
vTYPE

ARG1

[30:see]RESOURCE
tTYPE

ARG3

[30:see]RESOURCE
MEANING (/x_e.(/V_<<v,t>,t>.(/f_<v,t>.(V((/e_v.(agent(e,x)&f(e)))))))), TYPE t-3

GLUE

TENSE PST, VTYPE FIN30

'see<[15:Homer], [17:Bart]>'PRED

'Homer'PRED

[15:Homer]RESOURCE
MEANING Homer, TYPE e-16

GLUE
15

SUBJ

'Bart'PRED

[17:Bart]RESOURCE
MEANING Bart, TYPE e-17

GLUE
17

OBJ

[17:Bart]RESOURCE
eTYPE

ARG1

[71:see]RESOURCE
vTYPE

ARG1

[71:see]RESOURCE
tTYPE

ARG1

[71:see]RESOURCE
tTYPE

ARG2

[71:see]RESOURCE
vTYPE

ARG1

[71:see]RESOURCE
tTYPE

ARG3

[71:see]RESOURCE
MEANING (/x_e.(/V_<<v,t>,t>.(/f_<v,t>.(V((/e_v.(theme(e,x)&f(e)))))))), TYPE t-13

[15:Homer]RESOURCE
eTYPE

ARG1

[71:see]RESOURCE
vTYPE

ARG1

[71:see]RESOURCE
tTYPE

ARG1

[71:see]RESOURCE
tTYPE

ARG2

[71:see]RESOURCE
vTYPE

ARG1

[71:see]RESOURCE
tTYPE

ARG3

[71:see]RESOURCE
MEANING (/x_e.(/V_<<v,t>,t>.(/f_<v,t>.(V((/e_v.(agent(e,x)&f(e)))))))), TYPE t-11

[71:see]RESOURCE
vTYPE

ARG1

[71:see]RESOURCE
tTYPE

ARG1

[71:see]RESOURCE
MEANING (/f_<v,t>.(Ee_v.(f(e)))), TYPE t-15

GLUE

TENSE PST, VTYPE FIN71

[30:see]RESOURCE
vTYPE

ARG1

[30:see]RESOURCE
tTYPE

ARG1

[30:see]RESOURCE
tTYPE

ARG1

[71:see]RESOURCE
vTYPE

ARG1

[71:see]RESOURCE
tTYPE

ARG1

[71:see]RESOURCE
tTYPE

ARG2

[4:see]RESOURCE
vTYPE

ARG1

[4:see]RESOURCE
tTYPE

ARG3

[4:see]RESOURCE
MEANING [/P_<<v,t>,t>.[/Q_<<v,t>,t>.[/Z_<v,t>.[P(Z)&Q(Z)]]]], TYPE t-10

[4:see]RESOURCE
vTYPE

ARG1

[4:see]RESOURCE
tTYPE

ARG1

[4:see]RESOURCE
tTYPE

ARG1

[4:see]RESOURCE
vTYPE

ARG1

[4:see]RESOURCE
tTYPE

ARG2

[4:see]RESOURCE
MEANING [/V_<<v,t>,t>.[/f_<v,t>.[V((/e_v.[see(e)&f(e)]))]]], TYPE t-7

[4:see]RESOURCE
vTYPE

ARG1

[4:see]RESOURCE
MEANING [/e_v.[true(e)]], TYPE t-5

GLUE

[30:see]LOCAL
andCONJ4

Figure 3: Full f-structure for (1) generated by the XLE+Glue implementation

231

result in four different meaning representations, all equivalent to (2) (repeated be-
low). As shown in (50)–(53), they only differ in the order of conjuncts, reflecting
the order in which meaning representations combine.4

(2) [∃e. see(e) ∧ agent(e, m) ∧ theme(e, l)] ∧
[∃e. see(e) ∧ agent(e, h) ∧ theme(e, b)]

(50) ∃e2[agent(e2,Marge) ∧ theme(e2,Lisa) ∧ see(e2) ∧ true(e2)] ∧
∃e1[agent(e1,Homer) ∧ theme(e1,Bart) ∧ see(e1) ∧ true(e1)]

(51) ∃e2[agent(e2,Marge) ∧ theme(e2,Lisa) ∧ see(e2) ∧ true(e2)] ∧
∃e1[theme(e1,Bart) ∧ agent(e1,Homer) ∧ see(e1) ∧ true(e1)]

(52) ∃e2[theme(e2,Lisa) ∧ agent(e2,Marge) ∧ see(e2) ∧ true(e2)] ∧
∃e1[agent(e1,Homer) ∧ theme(e1,Bart) ∧ see(e1) ∧ true(e1)]

(53) ∃e2[theme(e2,Lisa) ∧ agent(e2,Marge) ∧ see(e2) ∧ true(e2)] ∧
∃e1[theme(e1,Bart) ∧ agent(e1,Homer) ∧ see(e1) ∧ true(e1)]

The implementation also verifies that the above analysis correctly deals with
gapping involving dependents shared between the conjuncts, as in (54), which gives
rise to two different semantic representations in (55)–(56) (differences between
them are underlined).
(54) Tracy introduced Lisa to Marge and Bart to Homer.
(55) [∃e. introduce(e) ∧ agent(e, t) ∧ theme(e, l) ∧ beneficiary(e, m)] ∧

[∃e. introduce(e) ∧ agent(e, t) ∧ theme(e, b) ∧ beneficiary(e, h)]
‘Tracy introduced Lisa to Marge and Tracy introduced Bart to Homer.’

(56) [∃e. introduce(e) ∧ agent(e, t) ∧ theme(e, l) ∧ beneficiary(e, m)] ∧
[∃e. introduce(e) ∧ agent(e, b) ∧ theme(e, l) ∧ beneficiary(e, h)]
‘Tracy introduced Lisa to Marge and Bart introduced Lisa to Homer.’

2.4 Limitations

The crucial assumption of this analysis is that verbs do not lexically refer to their
arguments in their semantic representations. This assumption is met by Champol-
lion’s (2015) representation in (9), translated into the MCs in (40)–(41) (all repeated
below).
(9) saw ⇝ λf. ∃e. see(e) ∧ f(e)
(40) saw ⇝ λV. λf. V (λe. see(e)∧f(e)) : ((↑v⊸ ↑t)⊸ ↑t)⊸ (↑v⊸ ↑t)⊸ ↑t

(41) λf. ∃e. f(e) : (%vv⊸%vt)⊸%vt, where %v = (↑ (local))
An MC analogous to (41) is also introduced constructionally in gapped clauses,
namely, in rule (30) (repeated below).

4Findlay & Haug 2022 propose a way to deal with some kinds of spurious ambiguities resulting
from Glue proofs, but it does not seem to be directly applicable to the case at hand.

232

(30) IP → IP1 [Comma IP]* Conj IP
↑=↓ ↓∈↑ ↓∈↑

(↓ local) ∈ ↑ λf. ∃e. f(e) : λf. ∃e. f(e) :
(↓v ⊸ ↓t)⊸ ↓t (↓v ⊸ ↓t)⊸ ↓t

Importantly, the MCs in (30) do not assume any particular number of dependents
– “remnants” – in the gapped clause(s) or what grammatical functions these rem-
nants bear. In the case of the running example (1) there are two remnants, a subject
and an object, but gapped clauses may consist of a larger number of remnants and
they can bear different grammatical functions. For example, there are four remnants
in (57) (Sag 1976: 278, ex. (3.4.51)) – a subject, an oblique dependent expressing
accompaniment, and two adjuncts (locative and temporal).
(57) Betsy dances with a parasol in the living room on Fridays and Peter with a

meat cleaver in the bar on Saturday nights.
Also the (instantiated) MC for the conjunction and, given in (44) and repeated be-
low, does not mention the number or kind of remnants.
(44) λV1.λV2.λf. V1(f) ∧ V2(f) :

((c1
v ⊸ c1

t)⊸ c1
t)⊸ ((c2

v ⊸ c2
t)⊸ c2

t)⊸ (cv⊸ ct)⊸ ct

What would not work as smoothly is a representation such as (58) or (59), where
arguments are referred to directly.
(58) saw ⇝ λx.λy. see(x, y)
(59) saw ⇝ λx.λy. λe. see(e) ∧ agent(e, x) ∧ theme(e, y)
We will illustrate the problem on the basis of the simpler representation (58).

At the level of pure meaning representations, without the linear Glue part, a so-
lution seems to be possible that is fully analogous to the analysis proposed above.
First, we may split (58) into two representations, one of which is also introduced
constructionally at the level of the gapped clause:
(60) saw ⇝ λx.λy. see(x, y)
(61) λx.λy.λf. f(x, y)
(62) gapped clause ⇝ λx.λy.λf. f(x, y)
The representations in (61) and (62) would then combine with the representations
of arguments within the two conjuncts, giving rise to (63)–(64):
(63) λf. f(m, l)
(64) λf. f(h, b)
These can be coordinated, assuming a variant of the usual representation of the
conjunction in (65), resulting in (66).
(65) λV1.λV2.λf. V1(f) ∧ V2(f)
(66) λf. f(m, l) ∧ f(h, b)
The resulting representation (66) can then be applied to the idiosyncratic represen-
tation introduced by the verb in (60), resulting in the desired (67):

233

(67) see(m, l) ∧ see(h, b)
However, the problem becomes clear once we introduce complete MCs corre-

sponding to (60)–(62):
(68) saw ⇝ λx.λy. see(x, y) : (%v subj)e⊸ (%v obj)e⊸%vt

(69) λx.λy.λf. f(x, y) :
(%v subj)e⊸ (%v obj)e⊸ ((%v subj)e⊸ (%v obj)e⊸%vt)⊸%vt

(70) gapped clause ⇝
λx.λy.λf. f(x, y) :
(↑ subj)e⊸ (↑ obj)e⊸ ((↑ subj)e⊸ (↑ obj)e⊸ ↑t)⊸ ↑t

In (68)–(69), %v is equal to ↑ or (↑ local), as in (41) above.5 Given the syntactic
structure of gapping assumed above, these MCs are instantiated as follows:
(71) saw ⇝ λx.λy. see(x, y) : (c1 subj)e⊸ (c1 obj)e⊸ c1

t

(72) λx.λy.λf. f(x, y) :
(c1 subj)e⊸ (c1 obj)e⊸ ((c1 subj)e⊸ (c1 obj)e⊸ c1

t)⊸ c1
t

(73) gapped clause ⇝
λx.λy.λf. f(x, y) :
(c2 subj)e⊸ (c2 obj)e⊸ ((c2 subj)e⊸ (c2 obj)e⊸ c2

t)⊸ c2
t

The problem is that such meaning constructors, including the constructionally
introduced MC for the gapped clause in (70), have to assume not only a specific
number of dependents, but also their grammatical functions. Hence, in order for
the solution to be general, a large disjunction of MCs such as (70) would have to
be introduced constructionally: different combinations of grammatical functions for
each number of dependents, with an arbitrary cutoff point on the maximal number
of dependents that can occur in gapping.

Also a large number of MCs for conjunctions would be needed. The deceptively
simple representation (65) corresponds to the instantiated MC in (74) needed for the
running example, in which there are two remnants, a subject and an object:
(74) λV1.λV2.λf. V1(f) ∧ V2(f) :

(((c1 subj)e⊸ (c1 obj)e⊸ c1
t)⊸ c1

t)⊸
(((c2 subj)e⊸ (c2 obj)e⊸ c2

t)⊸ c2
t)⊸

((c1 subj)e⊸ (c1 obj)e⊸ c1
t)⊸ ct

Again, such MCs for and would have to be added for any number of dependents (up
to an arbitrary cutoff point) and for any combination of grammatical functions.

Apart from the diminished readability of grammars with such a large number
5In (39)–(41) above, which present MCs for saw in the analysis based on Champollion’s (2015)

approach, only one MC, in (41), refers to %v. By contrast, both MCs (68)–(69) introduced by saw
are based on %v rather than ↑. This is because, in gapping constructions, ↑ instantiates to the hybrid
structure c, which does not directly contain grammatical function attributes such as subj or obj, so
there is no specific resource corresponding to, say, (↑ subj). On the other hand, %v instantiates in such
constructions to the non-gapped clause c1, which does contain such grammatical function attributes,
so there is a resource corresponding to, say, (%v subj).

234

of MCs, this solution may be too inefficient to be implementable in XLE+Glue.6
Hence, the solution of the preceding subsections is practically, if not theoretically,
limited to Champollion’s (2015) approach to event semantics or a variant thereof.

We do not consider this a serious limitation, as there are well-known inde-
pendent arguments for adopting event semantics in general (Parsons 1990) and
for Champollion’s implementation of composition in event semantics in particular
(Champollion 2015). Nevertheless, this is a limitation that the approach described
below attempts to avoid.

3 A “Deep Distributivity” Approach

An attempt at a more general alternative solution is inspired by an idea imple-
mented in XLE+Glue, namely, to encode meaning constructors as AVMs. We follow
XLE+Glue in assuming that such AVMs are members of set-valued glue attributes
within f-structures, though they could be placed in a separate projection. The spe-
cific encoding of MCs as AVMs will not concern us here (but see Figure 3 for an
example); the details may be found in Dalrymple et al. 2020. To simplify, we will
represent such AVM MCs as string MCs in scare quotes, e.g.: ‘m : ↑e’. For example,
partial lexical entries for Marge and saw may be represented as in (75)–(76), with
the semantic contribution of saw encoded as the simple, eventless λx.λy. see(x, y).
(75) Marge N (↑ pred) = ‘Marge’

‘m : ↑e’ ∈ (↑ glue)
(76) saw V (↑ pred) = ‘see⟨(↑ subj), (↑ obj)⟩’

‘λx.λy. see(x, y) : (↑ subj)e⊸ (↑ obj)e⊸ ↑t’ ∈ (↑ glue)
Assuming the lexical entry for Lisa in (77), fully analogous to that for Marge in (75),
the simple sentence (78) receives the f-structure (79).
(77) Lisa N (↑ pred) = ‘Lisa’

‘l : ↑e’ ∈ (↑ glue)
(78) Marge saw Lisa.
(79)

f

pred ‘see<(f subj), (f obj)>’

subj s

pred ‘Marge’

glue
{

‘m : se’
}

obj o

pred ‘Lisa’

glue
{

‘l : oe’
}

glue
{

‘λx.λy. see(x, y) : (f subj)e⊸ (f obj)e⊸ ft’
}

6One way to alleviate this problem to some extent would be to define an abbreviation, gf, for a dis-

junction of relevant grammatical functions, gf ≡ {subj|obj|. . .}, and use it in such MCs – together
with local names – instead of specific grammatical functions. For example, (70) could be generalized
to (i), where %x = (↑ gf) and %y = (↑ gf).
(i) gapped clause ⇝ λx.λy.λf. f(x, y) : %xe⊸%ye⊸ (%xe⊸%ye⊸ ↑t)⊸ ↑t

However, it would still be necessary to have a disjunction of such generalized MCs for different num-
bers of remnants.

235

As mentioned above, in XLE+Glue all values of the attributes glue are collected
and transferred to a linear theorem prover. In the case of example (78) and its f-
structure in (79), this results in a proof of the desired meaning representation in (80).
(80) see(m, l) : ft

The analysis of gapping proposed below relies on the possibility – currently
not implemented in XLE – to define glue as “deeply distributive”, in the sense in
which pred is hardcoded in XLE to be “deeply distributive”. Let us illustrate “deep
distributivity” of pred with an example.

Assume the structure c partially specified as in (81). Combined with the equa-
tion in (82), c has the structure in (83).

(81) c =

subj

[
pred ‘Marge’

]
obj

[
pred ‘Lisa’

]
,

subj
[
pred ‘Homer’

]
obj

[
pred ‘Bart’

]

(82) (c pred) = ‘see⟨(c subj), (c obj)⟩’

(83) c =

pred ‘see< 1 , 2 >’

subj 1
[
pred ‘Marge’

]
obj 2

[
pred ‘Lisa’

]
,

pred ‘see< 3 , 4 >’

subj 3
[
pred ‘Homer’

]
obj 4

[
pred ‘Bart’

]

What is important here is that the specifications (c subj) and (c obj) in (82) are
resolved independently for each conjunct, resulting in two different values of pred
in (83); hence “deep distributivity”. The syntactic analysis in Patejuk & Przepiór-
kowski 2017 relies on this behaviour of pred.

Returning to structures with the attribute glue specified as in the lexical entries
(75)–(77), the syntactic part of the analysis of gapping produces the f-structures
(84)–(85), fully analogous to (26)–(27) above. If the attribute glue could be made
to behave like pred, the verb’s glue in (85) would distribute to conjuncts and spec-
ifications such as (c subj), etc., would be resolved independently to (c1 subj) (i.e.,
to 1) and to (c2 subj) (i.e., to 3), etc., just as they do in the values of pred. This
desired effect is shown in (86).7

7Making glue distributive requires a non-standard representation of conjunctions (see (86)).
Under the standard analysis, shown in (i), the conj attribute has an atomic value which hosts the

conjunction form/type (and, or, etc.), while the corresponding glue attribute is placed at the same
level as conj and the set containing conjuncts. Under this analysis, when glue is made distributive, the
meaning constructor of the conjunction would be distributed (and so multiplied), which is undesired.
(i)

{[

. . .
]
,
[
. . .

]}
conj and

glue
{

. . .
}

(ii)

{[

. . .
]
,
[
. . .

]}

conj

form and

glue
{

. . .
}

This is why distributive glue requires an alternative representation of the conjunction, shown in (ii),

where the value of the conj attribute is an f-structure containing a form attribute whose value corre-
sponds to the conjunction form/type and a glue attribute containing the meaning constructor of the
conjunction. Since conj is non-distributive, the meaning constructor of the conjunction will not be
distributed (and so multiplied) under this modified analysis, as desired.

236

(84)

c2

subj 3

pred ‘Homer’

glue
{

‘h : 3 e’
}

obj 4

pred ‘Bart’

glue
{

‘b : 4 e’
}

(85)

c

pred ‘see<(c subj), (c obj)>’

glue
{

‘λx.λy. see(x, y) : (c subj)e⊸ (c obj)e⊸ ct’
}

local c1

subj 1

pred ‘Marge’

glue
{

‘m : 1 e’
}

obj 2

pred ‘Lisa’

glue
{

‘l : 2 e’
}

(86)

c

c1

pred ‘see< 1 , 2 >’

glue
{

‘λx.λy. see(x, y) : 1 e⊸ 2 e⊸ c1
t ’

}
subj 1

pred ‘Marge’

glue
{

‘m : 1 e’
}

obj 2

pred ‘Lisa’

glue
{

‘l : 2 e’
}

,

c2

pred ‘see< 3 , 4 >’

glue
{

‘λx.λy. see(x, y) : 3 e⊸ 4 e⊸ c2
t ’

}
subj 3

pred ‘Homer’

glue
{

‘h : 3 e’
}

obj 4

pred ‘Bart’

glue
{

‘b : 4 e’
}

local c1

conj

form and

glue
{

‘λp.λq. p ∧ q : c1
t ⊸ c2

t ⊸ ct’
}

Values of the glue attributes in this f-structure give rise to a proof of the desired
meaning representation in (87).
(87) see(m, l) ∧ see(h, b) : ct

More generally, the analysis proposed here leads to the correct account of the se-
mantics of gapping, regardless of the meaning representation assumed, i.e., without
the need to assume event semantics.

237

An interesting feature of this analysis is the multiplication of Glue resources
outside of the pure Glue system: while the MC which is the value of the verb’s glue
attribute is introduced just once, in the lexical entry (76), it gets multiplied via the
syntactic mechanism of f-structure distributivity, as illustrated in (86), due to the
distributivity of the attribute glue. The fact that syntax impinges on the resource
sensitivity of Glue could be considered as a potential conceptual problem, but we
believe that such behaviour is justified and desired: if pred is allowed to distribute
to conjuncts, a similar distribution of semantic aspects defined in glue should not
be controversial.

Unfortunately, as noted above, there does not seem to be a way of making glue
behave like pred in the current implementation of XLE, i.e., behave in such a way
that the ↑ metavariable used in assignments of glue values is instantiated indepen-
dently in each conjunct. As verified implementationally, even though glue can be
declared as a distributive attribute, ↑ used in glue points to the whole coordinate
structure c (instead of resolving to c1 in the first conjunct and c2 in the second),
while (↑ subj) gets resolved to the subsumption of the subj values of the two con-
juncts (and similarly for (↑ obj)). What is needed is a generalization of the XLE
treatment of pred, i.e., a mechanism to declare an arbitrary attribute as similarly
“deeply distributive”.

4 Conclusion

To the best of our knowledge, there are no previous LFG analyses of gapping at the
syntax-semantics interface, and this paper seeks to change this situation. We present
two codescriptive analyses that build on the syntactic account of gapping proposed
in Patejuk & Przepiórkowski 2017. The first analysis relies on Champollion’s (2015)
approach to event semantics but otherwise does not make any non-standard assump-
tions. It is based on standard theoretical Glue mechanisms and it has been verified
via a relatively straightforward XLE+Glue implementation. The other analysis does
not rely on event semantics – it is compatible with any meaning representation lan-
guage. However, it relies on the AVM encoding of meaning constructors within
f-structures, as proposed in Dalrymple et al. 2020, and – crucially – on the possibil-
ity of making the relevant f-structure attribute (namely, glue) “deeply distributive”,
on par with pred. As this last possibility is not currently implemented in XLE, this
analysis has not been implementationally verified.

Both analyses have only been applied to simple gapping constructions, involv-
ing coordination and a single finite verb missing – perhaps together with some de-
pendents – from the gapped clause. An extension of this analysis to more complex
constructions, involving missing verb chains, subconstituents, and occurrences of
gapping outside of coordination, discussed in Park 2019 and elsewhere, is left for
future work.

238

References

Asudeh, Ash. 2022. Glue semantics. Annual Review of Linguistics 8. 321–341.
DOI: https://doi.org/10.1146/annurev-linguistics-032521-053835.

Bresnan, Joan, Ash Asudeh, Ida Toivonen & Stephen Wechsler. 2016. Lexical-
functional syntax Blackwell Textbooks in Linguistics. Wiley-Blackwell 2nd edn.

Castañeda, Hector Neri. 1967. Comment on D. Davidson’s ‘The logical form of
action sentences’. In Rescher (1967) 104–112.

Champollion, Lucas. 2015. The interaction of compositional seman-
tics and event semantics. Linguistics and Philosophy 38(1). 31–66.
DOI: https://doi.org/10.1007/s10988-014-9162-8.

Crouch, Dick, Mary Dalrymple, Ron Kaplan, Tracy King, John Maxwell & Paula
Newman. 2011. XLE documentation. https://ling.sprachwiss.uni-konstanz.de/
pages/xle/doc/xle_toc.html.

Dalrymple, Mary (ed.). 1999. Semantics and syntax in Lexical Functional
Grammar: The resource logic approach. Cambridge, MA: MIT Press.
DOI: https://doi.org/10.7551/mitpress/6169.001.0001.

Dalrymple, Mary, John J. Lowe & Louise Mycock. 2019. The Oxford refer-
ence guide to Lexical Functional Grammar. Oxford: Oxford University Press.
DOI: https://doi.org/10.1093/oso/9780198733300.001.0001.

Dalrymple, Mary, Agnieszka Patejuk & Mark-Matthias Zymla. 2020. XLE+Glue
– A new tool for integrating semantic analysis in XLE. In Miriam Butt
& Tracy Holloway King (eds.), The Proceedings of the LFG’20 Conference,
89–108. Stanford, CA: CSLI Publications. https://web.stanford.edu/group/
cslipublications/cslipublications/LFG/LFG-2020/.

Davidson, Donald. 1967. The logical form of action sentences. In Rescher (1967)
81–95.

Findlay, Jamie Y. & Dag T. T. Haug. 2022. Managing scope ambiguities in Glue
via multistage proving. In Miriam Butt, Jamie Y. Findlay & Ida Toivonen (eds.),
The Proceedings of the LFG’22 Conference, 144–163. Stanford, CA: CSLI Pub-
lications. https://ojs.ub.uni-konstanz.de/lfg/index.php/main/issue/view/1.

Kokkonidis, Miltiadis. 2008. First-order Glue. Journal of Logic, Language and
Information 17(1). 43–68. DOI: https://doi.org/10.1007/s10849-006-9031-0.

Meßmer, Moritz & Mark-Matthias Zymla. 2018. The glue semantics workbench:
A modular toolkit for exploring linear logic and glue semantics. In Miriam Butt
& Tracy Holloway King (eds.), The Proceedings of the LFG’18 Conference,
268–282. Stanford, CA: CSLI Publications. https://web.stanford.edu/group/
cslipublications/cslipublications/LFG/LFG-2018/.

Park, Sang-Hee. 2019. Gapping: A constraint-based syntax-semantics interface.
Ph.D. dissertation, State University of New York at Buffalo.

Parsons, Terence. 1990. Events in the semantics of English: A study in subatomic
semantics. Cambridge, MA: MIT Press.

Partee, Barbara H. & Mats Rooth. 1983. Generalized conjunction and type ambigu-

239

https://doi.org/10.1146/annurev-linguistics-032521-053835
https://doi.org/10.1007/s10988-014-9162-8
https://ling.sprachwiss.uni-konstanz.de/pages/xle/doc/xle_toc.html
https://ling.sprachwiss.uni-konstanz.de/pages/xle/doc/xle_toc.html
https://doi.org/10.7551/mitpress/6169.001.0001
https://doi.org/10.1093/oso/9780198733300.001.0001
https://web.stanford.edu/group/cslipublications/cslipublications/LFG/LFG-2020/
https://web.stanford.edu/group/cslipublications/cslipublications/LFG/LFG-2020/
https://ojs.ub.uni-konstanz.de/lfg/index.php/main/issue/view/1
https://doi.org/10.1007/s10849-006-9031-0
https://web.stanford.edu/group/cslipublications/cslipublications/LFG/LFG-2018/
https://web.stanford.edu/group/cslipublications/cslipublications/LFG/LFG-2018/

ity. In Rainer Bäuerle, Christoph Schwarze & Arnim von Stechow (eds.), Mean-
ing, use and interpretation of language, 361–383. Berlin: Walter de Gruyter.
DOI: https://doi.org/10.1515/9783110852820.361.

Patejuk, Agnieszka & Adam Przepiórkowski. 2017. Filling the gap. In Miriam
Butt & Tracy Holloway King (eds.), The Proceedings of the LFG’17 Confer-
ence, 327–347. Stanford, CA: CSLI Publications. http://web.stanford.edu/group/
cslipublications/cslipublications/LFG/LFG-2017/.

Rescher, Nicholas (ed.). 1967. The logic of decision and action. Pittsburgh, PA:
University of Pittsburgh Press.

Ross, John. 1970. Gapping and the order of constituents. In Manfred Bierwisch &
Karl Erich Heidolph (eds.), Progress in linguistics, The Hague: Mouton.

Sag, Ivan A. 1976. Deletion and logical form. Cambridge, MA. Ph.D. dissertation,
Massachusetts Institute of Technology.

240

https://doi.org/10.1515/9783110852820.361
http://web.stanford.edu/group/cslipublications/cslipublications/LFG/LFG-2017/
http://web.stanford.edu/group/cslipublications/cslipublications/LFG/LFG-2017/

	Introduction
	An Event Semantics Approach
	Semantics
	Syntax–Semantics Interface
	Implementation
	Limitations

	A “Deep Distributivity” Approach
	Conclusion

