
Ambiguity management in computational
Glue semantics

Mark-Matthias Zymla
University of Konstanz

Proceedings of the LFG’24 Conference

Miriam Butt, Jamie Y. Findlay and Ida Toivonen (Editors)

2024

PubliKon

lfg-proceedings.org

https://lfg-proceedings.org

Abstract

This paper presents extensions to XLE+Glue and the Glue semantics work-
bench. Concretely, it builds on Findlay & Haug’s (2022) idea of multistage prov-
ing. By combining their insights with techniques first described in Lev (2007), this
paper provides a more flexible implementation of multistage proving. Further-
more, it presents an extension of XLE+Glue that allows users to integrate mul-
tistage proving into computational LFG grammars. Finally, the paper discusses
some insights from working on ambiguity management and semantic grammar
writing suggesting that full syntactic or semantic autonomy is a challenge for com-
putational models of LFG.

1 Introduction

The goals of this paper are two-fold.† Firstly, it presents a technical contribution in the
shape of a new implementation of Findlay & Haug’s (2022) multistage proving. This
implementation tackles multiple aspects of their proposal and arguably improves on
them. Secondly, it discusses the role of semantics in the projection architecture more
generally. Concretely, the ideals of syntactic and semantic autonomy are put under
scrutiny from the perspective of computational LFG.

Glue semantics suffers from abundant spurious and unwanted ambiguities.1 Mul-
tistage proving is a proposal that aims to solve both of these problems to an extent
(Findlay & Haug 2022). The general idea is to add additional structure to Glue proofs.
Intuitively, Glue proofs are made (partially) associative (Gotham 2021). This is handled
via a new projection: the proof structure, a tree-like structure partitioning Glue meaning
constructors (MCs). While the idea is formally well laid out, the proposed computa-
tional implementation is somewhat rudimentary. Derivations are handled in a cascading
bottom-up manner; i.e., one derivation is split up into a set of derivations. In this pa-
per, I argue that this potentially affects Glue semantics’ ability to capture long-distance
dependencies. I present a computationally more adequate implementation of multistage
proving that better reflects its formal ideas. Additionally, this paper presents a concrete
implementation of multistage proving for the Xerox Linguistics Environment (XLE;
Crouch et al. 2017), making it available for computational LFG research.

An exploration of the ideas underlying multistage proving unveils more fundamen-
tal questions about the flexibility of Glue semantics. Concretely, the question is whether
Glue semantics requires us to build additional structure to properly constrain ambigui-
ties or whether it is sufficient to transduce structure from other modules of the grammar
into the semantics.2 According to Findlay & Haug (2022), both structure building and

†I thank the audience of the 2024 LFG conference and the reviewers for their feedback. I am particularly
thankful to Ash Asudeh who prompted this effort in 2023. Furthermore, I am grateful to Jamie Findlay for
helpful discussion and comments. This work has been funded by the Deutsche Forschungsgemeinschaft
(DFG) within the project CUEPAQ, Grant Number 455910360, as part of the Priority Program ”Robust
Argumentation Machines (RATIO)” (SPP-1999).

1I use the term unwanted ambiguities for cases where unattested readings arise to contrast them with
spurious ambiguities that are semantically equivalent.

2This discussion is partially due to Ron Kaplan, p.c. It also builds on various other insights related to
syntactic and semantic autonomy due to, among others, Asudeh (2004) and Gotham (2021).

285

transduction are necessary to block unwanted ambiguities, but as it stands, their pro-
posal is more of a tool rather than a theory with any explanatory power.

Ultimately, the simple matter of fact is that a set of binary branching trees can easily
represent a semantics built around function application. The goal of ambiguity manage-
ment is, then, either to arrange the terminal nodes of such trees in the right order or to
filter out trees in the case that multiple are possible. The question is to what extent such
trees are built in the semantics, how much is projected onto the semantics by other struc-
tures, and what other factors may add additional structure to the semantics. Although it
is difficult to definitively answer these questions, this paper aims to provide some new
insights or at least perspectives on these issues. Thus, it covers both computational and
theoretical aspects of ambiguity management in Glue semantics.

In the next section, the main challenge is introduced: spurious and unwanted ambi-
guities. Then, I proceed to introduce graph-based proving for Glue semantics due to Lev
(2007) in Section 3. This provides the necessary background for Section 4, which intro-
duces a graph-based approach to multistage proving. Furthermore, Section 4.4 makes
a proposal for integrating the proof structure in the XLE, thus making it available for
computational LFG research. In Section 5, a more broad perspective is taken explor-
ing the syntax/semantics interface and the question of whether syntactic and semantic
structures are two sides of the same coin. Finally, Section 6 concludes.

2 Compositional ambiguities in Glue semantics

Glue semantics, despite the name, is a theory of the syntax/semantics interface rather
than semantics itself (Asudeh 2022).3 This is reflected in the fact that the idea of Glue
semantics is to be compatible with different syntactic and semantic representations.
This is achieved by splitting up semantic representations into meaning representations,
reflecting the semantics, and instructions for compositional assembly serving as an in-
terface to the syntax. Thus, compositionality is governed by two aspects: type logic
and relations to the syntax. Linear logic is a logic that allows us to capture both at the
same time (Kokkonidis 2006). The relation to type logic emerges due to Montague’s
(1970) seminal work on formal semantics, later streamlined by Heim & Kratzer (1998).
However, other than the previously cited work, Glue semantics is not based on transfor-
mations (e.g., quantifier raising) of syntactic trees.4

As with any other formal system for assigning linguistic representations to lan-
guage, Glue semantics struggles with two types of ambiguities: unwanted ambiguities
and spurious ambiguities. This can be illustrated very straightforwardly by virtue of
multiple adjectival modification of nouns. Given the naive assumption that all adjectives
follow the same template (that of intersective adjectives), we expect two representations
for the adjectival noun phrases in (1) and (2). In the case of intersective adjectives, (1),
this leads to spurious ambiguity as the two readings are equivalent. In the case of (2),
we get a completely unwanted interpretation we want to rule out.

3Glue semantics (Dalrymple et al. 1993; Dalrymple 1999) has recently received a number of concise
introductions: Asudeh (2022, 2023). Thus, we omit a re-iteration of the basics.

4As we will discuss later, a semantics built on function application can ultimately be represented as a
binary branching tree. Glue semantics generates such trees from more syntax-independent constraints.

286

(1) a trustworthy Scottish chairman
a. λQ.Dxrtrustworthypxq ^ scottishpxq ^ chairmanpxq ^ Qpxqs ”

b. λQ.Dxrscottishpxq ^ trustworthypxq ^ chairmanpxq ^ Qpxqs

(2) a trustworthy former chairman
a. λQ.Dxrtrustworthypxq ^ former(chairmanpxqq ^ Qpxqs

b. λQ.Dxrformerptrustworthypxq ^ chairmanpxqq ^ Qpxqs

The spurious ambiguity seems innocent at first but has massive implications as sen-
tences and analyses become more complex. That we predict unattested readings makes
the situation worse. The main issue here is that it is difficult in Glue semantics to distin-
guish unwanted from spurious ambiguities. The reason for this is fairly simple: Ambi-
guities arise from the assembly instructions, i.e., linear logic, but whether an ambiguity
is, in fact, wanted, unwanted, or spurious is generally determined by the meaning side.
Consider the following examples. Example (3) shows a simple analysis of intersective
adjectives. The intersective meaning is accounted for by conjunction on the meaning
side. Since conjunction is commutative, both derivations are correct. Thus leading to
spurious ambiguity. However, the meaning side and linear logic side share this prop-
erty, suggesting that they are in unison.

(3) a trustworthy Scottish chairman
a. λP.λx.trustworthypxq ^ P pxq : pge ⊸ gtq ⊸ ge ⊸ gt
b. λP.λx.scottishpxq ^ P pxq : pge ⊸ gtq ⊸ ge ⊸ gt
c. λx.chairmanpxq : ge ⊸ gt

Derivation 1:

trustworthy : pge ⊸ gtq ⊸ ge ⊸ gt

scottish : pge ⊸ gtq ⊸ ge ⊸ gt chairman : ge ⊸ gt

scottishpchairmanq : ge ⊸ gt

trustworthypscottishpchairmanqq : ge ⊸ gt

Derivation 2:

scottish : pge ⊸ gtq ⊸ ge ⊸ gt

trustworthy : pge ⊸ gtq ⊸ ge ⊸ gt chairman : ge ⊸ gt

trustworthypchairmanq : ge ⊸ gt

scottishptrustworthypchairmanqq : ge ⊸ gt

This is not always the case. We have seen in example (2) that not all adjectives
work commutatively. Nonetheless, as example (4) suggests, the assembly instructions
remain the same across all kinds of adjectives: they are modifiers, meaning constructors
that take some input, modify it, and return it without changing its type.5 For us, it
indicates a mismatch between the meaning side and the linear logic side of meaning
constructors. Glue semantics does not capture some of the finer nuances that constrain
adjective ordering.6

5In actuality, some finer details change, but the main point – that adjectives are modifiers – remains the
same (see Dalrymple 2001).

6Andrews (2018) also discusses and criticizes this treatment of adjectival modifiers. More generally,
e.g, Findlay (2021) points out that the link between semantics and the rest of the projection architecture
via linear logic is relatively weak, at least in the form it is currently popularly practiced.

287

(4) a former Scottish chairman
a. λP.λx.trustworthypxq ^ P pxq : pge ⊸ gtq ⊸ ge ⊸ gt
b. λP.λx.formerpP pxqq : pge ⊸ gtq ⊸ ge ⊸ gt
c. λx.chairmanpxq : ge ⊸ gt

There are a couple of ways to go from here: Early works, e.g., Gupta & Lamping (1998)
suggest leaving ambiguities of this nature underspecified, whereas Lev (2007) presents
various heuristics for ambiguity management and weeding out unwanted interpretations
in a computational context. More recently, Findlay & Haug (2022) suggested the intro-
duction of additional structure to the projection architecture to deal with both unwanted
and spurious ambiguities that arose from the need for calculating Glue derivations in
a more computationally efficient manner.7 Ambiguity management has also received a
fair share of attention in the theoretical literature. For example, Gotham (2019, 2021)
modifies the assembly language to avoid unwanted ambiguities with the goal of pre-
serving semantic autonomy (this topic is briefly discussed in Section 5).8

This section has shown that the issues of spurious ambiguities and unwanted ambi-
guities arise from the same source. However, spurious ambiguities are mainly discussed
in a computational context, whereas in theoretical work they are often swept under the
rug. Thus, computational approaches, which are in pursuit of efficient systems for deal-
ing with ambiguities, often provide a more holistic perspective. As this is the central
topic of this paper, the next section introduces the more technical aspects of linear logic
derivations, particularly Lev’s (2007) graph-based prover, re-implemented in the Glue
Semantics Workbench (Meßmer & Zymla 2018).

3 Graph-based proving

The Glue Semantics Workbench (GSWB) uses two provers based on Hepple (1996) and
Lev (2007). The prover based on Hepple’s work is a chart-based prover with improve-
ments suggested by Lev (2007). The second prover is a graph-based prover based on
additional work by Lev. This paper expands on the graph-based prover and focuses on
the management of compositional ambiguities.

The graph-based prover can be seen as an instance of factorizing out ambiguities
(Maxwell & Kaplan 1993). Intuitively, this means that derivations are partitioned into
ambiguous and non-ambiguous parts such that non-ambiguous parts have to be com-
puted only once and can participate in possibly multiple derivations resulting from am-
biguity. Before delving deeper into how this is achieved, we have to discuss some core
properties of graph-based proving. Firstly, we turn to the compilation process.

3.1 Compilation of premises

First proposed by Hepple (1996) for his chart prover, the compilation process has the
goal of reducing all higher-order linear logic formulas into first-order formulas. A for-
mula is higher-order if any linear implication within it has a complex antecedent. A

7Findlay and Haug, p.c.
8Ambiguity management is also sometimes mentioned more as a by-product of certain analyses, e.g.,

Andrews (2018); Cook & Payne (2006); Crouch & Van Genabith (1999).

288

common example of this is the type for quantifiers pe ⊸ tq ⊸ t. The correspond-
ing compilation process is illustrated in (5-a). As shown there, the complex antecedent
e ⊸ t is split up, creating a new premise resi. This new premise corresponds to tradi-
tionally used assumptions and is marked similarly with brackets. We also highlight its
origin with an index i. This index ensures that the remainder of the initial formula, here
ti ⊸ t, combines with an element that made use of the new resource. This is shown
in (5-b) where we want to combine the quantifier with a first-order formula, e ⊸ t.
First, the first-order formula consumes the compiled-out assumption resi. The resulting
ti now carries the index of the assumption. The assumption is discharged by combining
it with the assumption’s original host, ti ⊸ t. This derivation corresponds to a simple
sentence like a dog barked, as illustrated.

(5) a. pe ⊸ tq ⊸ t Ñcomp resi, ti ⊸ t

b.

X : resi λx.barkpxq : e ⊸ t

barkpXq : ti

λx.barkpxq : ti λQ.Dxrdogpxq ^ Qpxqs : ti ⊸ t

Dxrdogpxq ^ barkpxqs : t

The process of compilation plays a role in accounting for long-distance dependen-
cies in Glue derivations as there can be an arbitrary distance between the use of the
assumption and its re-connection with its host.

A consequence of the compilation process is that it becomes clear that quanti-
fiers share properties with modifiers, i.e., they can be reduced to premises of type
X ⊸ X .9, 10 As already stated by Gupta & Lamping (1998), only modifiers cause com-
positional ambiguity. This means that dealing with wanted scopal ambiguities and un-
wanted or spurious ambiguities both rely on how modifiers are handled. The factoring-
out mentioned above aims at disentangling skeletons from modifiers.11 By factoring
out modifiers from a derivation, we can constrain the need for ambiguity management
to subparts of the proof. This idea was proposed by Lev (2007) for Glue semantics.

3.2 The category graph

Concretely, a so-called category graph is used.12 A category graph for some sentence
is formed by inspecting all categories that are used in its Glue derivation. Categories
correspond to the set of unique linear logic formulas appearing in the premise set. They
form (a part of) the vertices of the graph. During a computational derivation, the in-
put premises are first compiled and indexed; then categories are extracted.13 Consider
example (6). From the compiled premise set, we can determine the categories in (7).

9The compiled out assumption ensures that quantifiers cannot arbitrarily modify any element of type
t, but only those that carry the appropriate assumption. Nonetheless, their modifier status is the cause of
scopal ambiguity.

10Impure modifiers are possible, e.g., a ⊸ b ⊸ a. They have the same properties as pure modifiers.
11Opposed to modifiers, skeletons are Glue premises that follow a fixed order of combination, i.e., their

input must be different from their output.
12A more detailed explanation is given in Lev (2007). However, we state the key points here to provide

a concise overview of graph-based Glue derivations.
13The indices are important to assure resource sensitivity and will be explained in more detail later.

289

Each category is unique, but it can be instantiated multiple times in MCs. For example,
the category f ⊸ f occurs twice in the input premise set (assumption indices are not
part of a category’s properties). The subformula h ⊸ f occurs as part of the verb’s
meaning constructor, but is also a category in its own right. Similarly, the category f is
instantiated multiple times as part of the quantifiers as well as the verb.

(6)

λQ.@xrpersonpxq Ñ Qpxqs : pge ⊸ ftq ⊸ ft
λx.λy.seepx, yq : ge ⊸ he ⊸ ft
λQ.Dyrpersonpyq ^ Qpyqs : phe ⊸ ftq ⊸ ft

ÝÑcompile

r0sλQ.@xrpersonpxq Ñ Qpxqs : ft,r3s ⊸ ft
r3sX : g3e
r1sλx.λy.seepx, yq : ge ⊸ he ⊸ ft
r2sλQ.Dyrpersonpyq ^ Qpyqs : ft,r4s ⊸ ft
r4sY : h4

e

(7) Relevant categories:

a.
ge ft ⊸ ft ge ⊸ he ⊸ ft
he he ⊸ ft
ft

The category graph is a directed graph built by combining categories according to the
combination rules of linear logic. For example, he is combined with he ⊸ ft via a
combination node (the additional vertex in the graph), which points to the category ft,
indicating the obvious result of combining the two categories. This allows us to build
the graph in Figure 1, on the left. There, the orange nodes correspond to the original
premises before compilation.14 Rectangular blue nodes correspond to the relevant cate-
gories used in the derivation while circular blue nodes correspond to combination steps.
The yellow node corresponds to the goal category of the proof. Green nodes with mul-
tiple elements play a special role. They correspond to cycles, as with the bottommost
node in Figure 1 on the left. Such cycles correspond to an embedded graph, thus, the
green node on the left corresponds to the cyclic graph on the right. As indicated by the
dashed lines, the inputs from the main graph on the left feed into the cyclic graph. This
is due to the fact that these nodes play a role in the calculations within the embedded
graph. The difference between the two graphs is to be made clear shortly.

This layout is achieved by applying a strong connectivity algorithm that condenses
cycles in a graph. The result is a graph containing strongly connected components
(SSCs; Tarjan 1972), sub-graphs in which there is a path between any two vertices. All
modifiers are contained within strongly connected component. Thus, this allows us to
treat skeleton premises and modifier premises independently. We simply need to com-
bine skeleton premises according to the main graph and then deal with the ambiguity
through the SSC with added input nodes, as shown in Figure 1 on the right.

3.3 Semantic derivation

The combination process is guided through so-called histories. They store information
on indices and on the meaning side and keep track of combination steps via pointers
to their parents. All initial categories (those whose category exactly matches an input
premise) are associated with initial histories. Initial histories do not have parents, as
illustrated in (8) by not having the feature p. Importantly, the category f ⊸ f has two
histories corresponding to the two different original premises associated with it.

14Their outgoing edges indicate the compilation process.

290

Figure 1: Linear logic derivation graph with strongly connected component in green

(8) a. History for category ge ⊸ he ⊸ ft:
ge ⊸ he ⊸ ft Ñ

␣

h1 : r1s λx.λy.seepx, yq : ge ⊸ he ⊸ ft
(

b. Histories for category ft ⊸ ft:
ft ⊸ ft Ñ

"

h1 : r0s λQ.@xrpersonpxq Ñ Qpxqs : ft,r3s ⊸ ft
h2 : r2s λQ.Dyrpersonpyq ^ Qpyqs : ft,r4s ⊸ ft

*

The combination of two histories is illustrated in (9). There, the history for the category
he ⊸ ft is built up by combining the histories of the categories ge and ge ⊸ he ⊸
ft. Accordingly, the parents-array marked with p provides pointers to parent histories
corresponding to functor f and argument a.

For finding a successful derivation, the semantics are ignored when combining his-
tories. Rather, they built up a tree structure consisting of function application steps.
Thus, the process of finding a successful derivation is prioritized before actually build-
ing the corresponding semantics since this can be done by inspecting only the linear
logic side (Lev 2007; see also Dalrymple et al. 1999a).

(9) History for category he ⊸ ft:
he ⊸ ft Ñ

$

&

%

h3 : r1, 3s fpaq : he ⊸ ft,

p

„

f : h1 : r1s λx.λy. seepx, yq : ge ⊸ he ⊸ ft
a : h2 : r3s X : ge

ȷ

,

.

-

The full semantics of a derivation can then be calculated by tracing back function ap-
plication steps from the history or histories corresponding to the goal category (yellow
in Figure 1). This is illustrated in Figure 2.

Why are there two solutions? This is where the indexation of the compiled premises
comes into play. Recall that the process for handling ambiguous elements is distinct
from that of combining skeletons which can be simply read off the category graph. To
deal with the ambiguity in example (6) we need to employ a variation of the chart prover.
For this, we make the additional assumption that whenever two premises are combined,

291

r0, 1, 2, 3, 4s@xrpersonpxq Ñ Dyrpersonpyq ^ seepx, yqss

r0, 1, 2, 3, 4sDyrpersonpyq ^ @xrpersonpxq Ñ seepx, yqss

FA

FA

r4sYe

FA

r3sXer1sλx.λy.seepx, yqr2sλQ.Dyrpersonpyq ^ Qpyqs

r0sλQ.@xrpersonpxq Ñ Qpxqs

r0sλQ.@xrpersonpxq Ñ Qpxqs

r2sλQ.Dyrpersonpyq ^ Qpyqs

Figure 2: Resulting semantic derivation

then their index sets are combined. Furthermore, only premise sets with disjoint index
sets may be combined. Example (9) illustrates this. There, the history h3 with index set
r1, 3s results from the combination of the histories h1 with index set r1s and h3 with
index set r3s. For our running example, by combining the verb with its arguments we
get the history in (10) (here with semantics for ease of exposition). These steps are the
same regardless of the semantic ambiguity. We only have to compute them once!

(10) a. History for category ft:
ft Ñ

␣

h1 : r1, 3, 4s seepX,Y q : ft
(

This illustrates what I have stated in the previous section: the category graph disentan-
gles skeleton and modifier premises. Example (10) is the result of the skeleton deriva-
tions of (6). For the computation of the cyclic subgraph, we use the chart prover. It
works by naively trying to combine each element with each other element in the deriva-
tion until no new combinations emerge, and storing intermediate solutions on a chart.
This makes it a reasonable tool for calculating proofs with multiple solutions.15

The factoring out of the skeleton computations results in a reduction of compu-
tations necessary for the chart prover because we can feed in results of the skeleton
derivation. This is done by following the dashed lines from c2 into the subgraph in Fig-
ure 1. This means, for the current example, we now only have to check six possible
combinations (halving the number of combinations necessary with a pure chart prover).

Of these, only two succeed. The results are again naively combined with the premise
set, and again, only two combinations succeed due to the disjoint index set constraint.
The corresponding procedure is schematized in (11). The left column shows the input.
The center column shows the intermediate results of trying to combine all initial ele-
ments on top. By attempting to combine those again with the elements below the line,
we arrive at the two solutions in the right column.

15It is described in Hepple (1996) and Lev (2007: ch. 5), as well as Meßmer & Zymla (2018). Thus, we
will not explain it in detail here. However, there is a full chart derivation of (6) in the appendix.

292

{
[1] 1 : (a -o a)
[2] 2 : (a -o a)
[3] 3 : (a -o a) || noscope
[4] 4 : (a -o a) || noscope
[5] 5 : a
}

ñ

{
[3] 3 : (a -o a) || noscope
[4] 4 : (a -o a) || noscope
[5] 5 : a
}

{
[3,4,5] 3(4(5)) : a
[1] 1 : (a -o a)
[2] 2 : (a -o a)
}

[1,2,3,4,5] 1(2(3(4(5)))) : a
[1,2,3,4,5] 2(1(3(4(5)))) : a

Figure 3: Partioning meaning constructors with the noscope flag

(11)
r0s : pft,3 ⊸ ftq
r2s : pft,4 ⊸ ftq
r1, 3, 4s : f3,4

ÝÑprove

r1, 2, 3, 4s : ft
r0, 1, 3, 4s : ft

r0s : pft,3 ⊸ ftq
r2s : pft,4 ⊸ ftq
r1, 3, 4s : f3,4

ÝÑprove
r0, 1, 2, 3, 4s : ft
r0, 1, 2, 3, 4s : ft

3.4 Partioning premise sets

The important caveat of the chart prover is that it is naive. In the graph-based prover,
premises are sorted by the category graph, which can be built quadratically. Conversely,
the chart prover is unstructured. In the worst case, its derivations are factorial. As such,
even when the ambiguity is factored out, it can become overwhelming computationally.

In Section 2, we established that it is sometimes difficult in Glue to distinguish
spurious ambiguities from unwanted ambiguities. However, the simplest way to deal
with this is to mark MCs that would introduce spurious ambiguities as such. This simple
way to deal with ambiguities is proposed by Lev (2007) in the shape of the noscope
flag. The noscope flag essentially partitions the input set of the chart prover into scoping
and non-scoping modifiers. Furthermore, as the name implies, noscope flags indicate
that the order of application does not matter. For example, one has to find only one
solution for a set containing only non-scoping modifiers (in addition to any potential
arguments). The process is illustrated in Figure 3. First, the non-scoping modifiers are
applied to any suitable input resources in arbitrary order.16 The result is passed onto a
second stage of chart-proving, including the result of the non-scoping derivation and
the remaining scope-sensitive modifiers. Thus, two solutions are found instead of 24.

16This means that everything marked with noscope has more narrow scope than scoping elements.
Across multiple premises marked with noscope, the scope is determined by the order in which premises
are processed during the chart derivation (i.e., randomly). There are various ways of doing this efficiently
but they are not important here (see, e.g., Lev 2007: 197ff.). In general, it is fairly straightforward to find a
solution given the true commutativity of noscope-marked modifiers.

293

S Ñ
L1

ˆ̊γ “ ˚γ

R1

ˆ̊γ Ÿ ˚γ

S:0 Ñγ n1

R1:2 Ñγ n2

ˆ̊γ Ÿ ˚γ

E:7
ˆ̊γ “ ˚γ

5 : a

R:6
ˆ̊γ “ ˚γ

4 : a ⊸ a

L:5
ˆ̊γ “ ˚γ

3 : a ⊸ a

L1:1
ˆ̊γ “ ˚γ

R:4
ˆ̊γ “ ˚γ

2 : a ⊸ a

L:3
ˆ̊γ “ ˚γ

1 : a ⊸ a

Figure 4: Example phrase structure rule and corresponding c-structure

4 A faithful implementation of multistage proving

In a sense, the idea of partitioning meaning constructors into groups has been expanded
upon by Findlay & Haug (2022). While this idea is conceptually straightforward, they,
furthermore, integrate it into the projection architecture of LFG in a formally sophisti-
cated manner. In this section, we first briefly discuss their proposal, both theoretically
and technically, then formulate some criticisms for their computational implementation,
and finally propose a novel implementation that circumvents at least the technical prob-
lems but also may push the exploration of theoretical questions by providing an explicit
implementation in the Xerox Linguistics Environment (XLE; Crouch et al. 2017).

4.1 The proof structure

Findlay & Haug (2022) propose a new projection in LFG’s modular architecture, the
proof structure. The proof structure is formally a tree and specified via equality and
dominance constraints. This is illustrated in Figure 4. There, * identifies c-structure
indices. The subscript γ maps c-structure nodes onto their proof structure counter-
parts. Thus, proof constraints describe relations between proof structure nodes. In Fig-
ure 4, the proof structure essentially partitions the c-structure into L1 and R1. Thus, we
partition our meaning constructors according to a certain c-structure configuration.17

Let us call the resulting structure g(lue)-structure (as p(roof)-structure clashes with
p(honological)-structure).

The g-structure for the example in Figure 4 is given in Figure 5.18 There, each
proof node is associated with a set of meaning constructors ti, percolated up via the
pre-terminal nodes, where i is an index co-identifying the relevant proof structure node.

17As a reviewer of the abstract pointed out, generally speaking, the proof structure is more flexible as
it can potentially apply to indices from any projection and even introduce new nodes. We will discuss this
point later.

18In Figure 4, the annotation indicates that only two nodes play a role in building the proof structure,
namely n1 and n2 marked with the γ-correspondence Ñγ .

294

#

1p2p3p4p5qqq : a
+

: n1
1p2p4p3p5qqq : a
2p1p3p4p5qqq : a
2p1p4p3p5qqq : a

#

3p4p5qq : a
+

: n24p3p5qq : a

3 : a ⊸ a +

: t24 : a ⊸ a
5 : a

#

1 : a ⊸ a
+

: t12 : a ⊸ a

Figure 5: G-structure with added solutions

Thus, in this case, we get the given tree. By convention, the left-most daughter carries
the associated meaning constructors. Consequently, our meaning constructors are parti-
tioned into two stages. Each stage still introduces an ambiguity in our example, but once
again, we have reduced 24 possible solutions to four, which could, in fact, be desired.

4.2 Original implementation and criticism

Findlay & Haug (2022) propose to implement this by virtue of a cascade of chart
provers. Concretely, they traverse the tree bottom-up. For each node ti, they calculate
all possible combinations and pass up the relevant intermediate results to the next stage.
Thus, in Figure 5, all the results stored in n2 would be combined into a premise set with
the elements in t1 to calculate the solutions in n1.

This approach has a major weakness: The intermediate goals of different stages
need to be explicitly stated. This is necessary to avoid passing up information that has
already been used up in the derivation. Thus, somewhere in the architecture, intermedi-
ate solutions must be specified before they are concretely derived. This seems ad hoc.
That this is inelegant and not always trivial can be illustrated by examining one of their
examples regarding scope freezing, e.g., example (12) (their (9) and Figure 3). There,
it is assumed that it is impossible for the universal quantifier in the direct object NP to
outscope the existential quantifier in the indirect object NP.

(12) Hilary gave a student every grade.
a. D ă @

b. @ ă D

This means that, similar to our previous example, we have two stages, as shown in Fig-
ure 6. The embedded node t2 combines the verb with the quantifier scoping over the
direct object. Thus, Findlay & Haug (2022) predict the intermediate and correct solu-
tion in example (13-a) for n2 in Figure 6, as the sequent in (13-b) is valid. To work
with intermediate goals computationally, they add a Goal premise with the intermedi-
ate type as antecedent. This is exemplified in (13-c) which can be then added to t2 in

295

#

∅

+

: n1

#

∅

+

: n2

#

λx.λz.λz.givepx,y, zq : h ⊸ s ⊸ g ⊸ f
+

: t2λQ.@xrgradepxq Ñ Qpxqs : pg ⊸ fq ⊸ f

#

h : h
+

: t1λQ.Dxrstudentpxq ^ Qpxqs : ps ⊸ fq ⊸ f

Figure 6: Computationally failing proof structure for (12)

Figure 6. The result is a set of premises that has an atomic goal G. The meaning side
of G is a dummy predicate GOAL which can be stripped off the intermediate meaning
representation easily.

(13) a. λx.λy.@zrgradepzq Ñ givepx, y, zqss : h ⊸ s ⊸ f
b. h ⊸ s ⊸ g ⊸ f, pg ⊸ fq ⊸ f $ h ⊸ s ⊸ f
c. λP.GOALpP q : ph ⊸ s ⊸ fq ⊸ G

This approach essentially duplicates resources that are missing from t2 by hard-
coding them within the proof tree. One could argue that the information can be recon-
structed from within stage n2. However, if not hard-coded, the goal needs to be derived
from the left-hand side of the sequent in (13-b), introducing additional computations
and, possibly, multiple results requiring us to deal with further spurious ambiguities.19

Thus, overall the cascading chart prover approach to multistage proving does not
faithfully implement the formal elegance of the multistage proving idea.20 In the next
section, I present an alternative method to multistage proving, which does away with the
need for knowing intermediate goals beforehand, while maintaining the general idea of
cascading proof steps. This is achieved by integrating multistage proving within the
graph-based proving paradigm introduced in Section 3. Furthermore, I integrate this
method into XLE+Glue, thus providing an explicit implementation for LFG grammars.

19For example, the following sequent is also valid:

(i) h ⊸ s ⊸ g ⊸ f, pg ⊸ fq ⊸ f $ s ⊸ h ⊸ f

Thus, making the goal category of n2 in Figure 6 ambiguous. Findlay & Haug (2022) acknowledge prob-
lems along these lines. The present proposal provides a possible solution.

20It is possible that this approach is expected to work in tandem with the propsal made in Findlay (2021).
There, intermediate results are purposefully stored in the semantic structure. However, the computational
complications discussed here still need to be considered when evaluating the implementation.

296

{
//2: Scope freezing; 1 solution
h : h_e
a-student : ((s_e -o f_t) -o f_t)

{
every-grade : ((g_e -o f_t) -o f_t)
give: (h_e -o (s_e -o (g_e -o f_t)))
}

}

Figure 7: Bracketed meaning constructors for example (12)

4.3 Graph-based multistage proving

In the proposal made in this paper and following Findlay & Haug’s (2022) idea, mul-
tistage premise sets are represented as bracketed premise sets. Thus, Glue semantics
is made partially non-associative (see also Gotham 2021). According to Moot & Re-
toré (2012: 111ff.), this is a desirable result: “What we would like is to have some sort
of controlled access to the structural rules of associativity and commutativity.”21 An
example of this is given in Figure 7.

The intuitive idea behind graph-based multistage proving is to apply the cascad-
ing chart-proving mechanism only within the cycles that may occur during graph-based
proving. Let us unwrap this idea. First, we label each set of brackets according to coor-
dinates in the proof tree and store relations between them in a separate graph structure.
This is the proof structure in the original proposal, now encoded via bracketing. As ex-
plained in Section 3, graph-based proving factors out modifiers and applies chart-based
proving to them. Here, we use the proof tree to partition the chart. The important differ-
ence to Findlay & Haug (2022) is that our chart is reduced. All skeleton combinations
are already processed.22 The input to the chart-prover is determined by the nodes within
the strongly connected component and the nodes leading into the sub-graph represent-
ing the cycle. The graph corresponding to the MCs in Figure 7 is shown in Figure 8.
Recall that the graph is based on the compiled premises shown in (14).

(14)

r0s : h : he
r1s : λQ.Dxrstudentpxq ^ Qpxqs : ppse ⊸ ftq ⊸ ftq
r2s : λQ.@xrgradepxq Ñ Qpxqs : ppge ⊸ ftq ⊸ ftq
r3s : λx.λy.λz.givepx, y, zq : h ⊸ s ⊸ g ⊸ f

ÝÑcompile

r0s : h : he
r1s : pft,4 ⊸ ftq
r2s : pft,5 ⊸ ftq
r3s : h ⊸ s ⊸ g ⊸ f
r4s : se
r5s : ge

The proof corresponding to the cycle in Figure 8 is schematized in (15). Only two
input nodes are relevant as indicated by the dashed lines in the cycle representation. The
algorithm collects the corresponding histories for chart-proving. Then, the premise set
is partitioned according to the proof tree. The tree is traversed bottom-up from left to

21We will discuss commutativity briefly in Section 5.
22This is not always the case. Some complex cycles can contain skeleton premises which need to be

taken into account. However, as the chart-proving method is a very general method for calculating Glue
proofs, this is not a problem.

297

Figure 8: Derivation graph for example (14)

right.23 As example (15) indicates, only the results of the derivation are passed on to the
next stage. This is achieved by making sure that only elements are passed on where all
modifiers in the input set have been applied.24

(15)
r1s : pft,4 ⊸ ftq
r2s : pft,5 ⊸ ftq
r0, 3, 4, 5s : f4,5

ÝÑpartition

#

r2s : pft,5 ⊸ ftq
r0, 3, 4, 5s : f4,5

Óprove

r1s : pft,4 ⊸ ftq
r0, 2, 3, 4, 5s : f4

+

ÝÑprove r0, 1, 2, 3, 4, 5s : f4,5

In summary, the method presented here does not require us to know intermediate goals
due to the fact that fixed elements in the derivation are factored out and only modifiers
are applied in a certain order based on the proof tree. Thus, by combining the intu-
itive idea of partitioning meaning constructors with a graph-based prover, we can omit
certain stipulations made by Findlay & Haug (2022).

4.4 XLE+Glue with proof structure

This also makes it easier to interface multistage proving with the XLE. Concretely, we
use XLE+Glue, developed by Dalrymple et al. (2020), as a basis. We extend the system
with a component that extracts proof trees from XLE analyses and translates them into
bracketed meaning constructor sets. We make the following basic assumptions:

23Sister nodes could potentially be parallelized for additional performance gains.
24In Section B of the appendix, a more complex example is shown that illustrates that other resources

potentially need to be available at multiple stages.

298

EQUAL-GLUE(DOWN UP) =
UP = %up
DOWN = %down
%down $ (t::%up ELEMENTS).

DOMINATES-GLUE(DOWN UP N) =
@(CONCAT DAUGHTER N %daughter)
UP = %up
DOWN = %down
%down $ (t::%up %daughter

ELEMENTS).

n1

»

—

—

—

—

—

—

—

—

—

—

–

DAUGHTER1 n2

»

—

—

–

ELEMENTS t2

$

’

&

’

%

h ⊸ s ⊸ g ⊸ f

pft,5 ⊸ ftq

ge

,

/

.

/

-

fi

ffi

ffi

fl

ELEMENTS t1

$

’

&

’

%

pft,4 ⊸ ftq

se

he

,

/

.

/

-

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Figure 9: Proof structure templates and sample AVM-representation for example (12)

i) The proof structure is a single rooted tree.

ii) Meaning constructors are associated with c-structure indices.

The proposal is illustrated in Figure 9. There, two templates are specified to build up
the proof tree in the t:: projection: the equation-template and the dominance-template.
Both take two arguments, namely indices governed by the proof structure. The local
names %up and %down are used to properly instantiate all relevant nodes with projec-
tion information, which is sometimes omitted when a node is not required for deriving
the f-structure.25 In the dominance-template, the additional parameter N is used to dif-
ferentiate between sister nodes in the proof tree.26 Consequently, the proof structure is
an attribute/value matrix built from these templates. Importantly, to avoid clutter in the
grammar, each node with no proof structure specification is treated as having the anno-
tation ˆ̊γ “ ˚γ , i.e., equality with its mother node. This is taken care of when traversing
the c-structure to extract the multistage premise set.

Figure 10 illustrates a sample use of the proof structure templates to avoid unwanted
ambiguities in example (14). As described in Findlay & Haug (2022), the secondary
object (here OBJ2) is put in an embedded position with the verb, whereas the SUBJ and
primary object remain in the dominating proof tree node. By using the same index, the
embedded elements are stored as part of the same proof tree node.27

Bracketed premise sets are extracted by traversing XLE’s c-structure output. This
process relies on the fact that the c-structure is hierarchical for resolving implicit equa-
tions between mother and daughter nodes. Thus, the proof structure is also strictly a tree
in this implementation. As a result, the procedure is fairly straightforward.

25This seems to be an idiosyncrasy of XLE rather than necessarily intended behavior. Thus, the use of
local names can be seen as an implementation trick.

26In the current implementation, sister nodes need to be enumerated manually.
27Another technical trick employed here is the fact that the proof node is associated with the f-structure

index of the VP rather than the c-structure index. This is due to the fact that multiple-branching trees are
treated as covert binary trees in XLE. Thus, using t::M* to refer to the c-structure mother node instead of
t::ˆ would make the system a bit more complicated. However, this also illustrates how the proof structure
can interact not only with c- but also with f-structure in this implementation.

299

S --> NP: (ˆ SUBJ)=!
(! CASE)=nom
@(EQUAL-GLUE * t::ˆ);

VP: (ˆ TNS-ASP TENSE).

VP --> (AUX)
V: ˆ=!

@(DOMINATES-GLUE * t::ˆ 1);
(NP: (ˆ OBJ)=!

(! CASE)=acc
@(EQUAL-GLUE * t::ˆ))

(NP: (ˆ OBJ2) = !
@(DOMINATES-GLUE * t::ˆ 1))

"secondary object"
...

Figure 10: Sample use of proof structure templates

4.5 Exploring multistage proving

The GSWB (Meßmer & Zymla 2018) has grown into a more comprehensive eco-
system including various aspects of computational Glue semantics that I have sub-
sumed under the banner of XLE+Glue (coined by Dalrymple et al. 2020). The cur-
rent work can be explored at https://github.com/Mmaz1988/xleplusglue/tree/lfg2024
multistage proving. This repository combines the GSWB,28 LiGER,29 and the original
XLE+Glue30 into one large framework for exploring various aspects of computational
Glue semantics. Furthermore, it provides a web interface for using the tools without
the need for extensive technical knowledge. However, an XLE license and the XLE
source code, as well as Docker,31 are required. The repository contains a toy grammar
for exploring multistage proving and a test file for the GSWB, including tests of varying
complexity for the multistage proving algorithm. These tests go far beyond the simple
examples discussed in this paper.

5 Some general considerations on ambiguity management

Multistage proving is, among other things, a tool for making semantic parsing more
efficient. Ambiguities arise in all phases of parsing a linguistic expression. The com-
putational complexity tends to rise as one moves from form to meaning: morphology
is encoded in terms of regular languages, which can be solved in Opnq, c-structures
are polynomial (Opn3q)), and f-structures are exponential (all in the worst case). For
semantics, the simple chart parser fares even worse in the worst case, being at least
factorial (Opn!q). Consequently, it is sometimes useful to push labor toward the more
computationally efficient parts of parsing. One such instance is, for example, the pres-
ence of complex categories, which effectively push functional disjuncts into the domain
of phrase structure rules. Similarly, Glue semantics can be made to involve more or less
information from other projections. I discuss f-structure and c-structure in particular.

28https://github.com/Mmaz1988/GlueSemWorkbench v2
29https://github.com/Mmaz1988/liger
30https://github.com/Mmaz1988/xle-glueworkbench-interface
31https://www.docker.com/

300

https://github.com/Mmaz1988/xleplusglue/tree/lfg2024_multistage_proving
https://github.com/Mmaz1988/xleplusglue/tree/lfg2024_multistage_proving
https://github.com/Mmaz1988/GlueSemWorkbench_v2
https://github.com/Mmaz1988/liger
https://github.com/Mmaz1988/xle-glueworkbench-interface
https://www.docker.com/

λx.λy.visitpy, xq : g ⊸ ph ⊸ fq a : g

λy.visitpy, aq : h ⊸ f j : h

visitpj, aq : f

Figure 11: Traditional derivation for Jordan visits Alex

5.1 Imposing hierarchical structures

Linear logic is quite capable of encoding hierarchical information. This can be seen
in Figure 11 based on the meaning constructors in example (16-a). They mirror the
constituency hierarchy between the SUBJ and OBJ-GF in a configurational language,
specifically English. Nothing in Glue semantics hinges on this possibility of mirroring
the c-structure though. However, even this could still be seen as capturing the fact that
there is a hierarchical relationship between SUBJ and OBJ that needs to surface some-
where in the syntax/semantics interface. If this hierarchy is already expressed at the
level of syntax, why not transduce it to the semantics from there?

(16) Jordan visits Alex.
a. John j : g

Alex a : h
visits λx.λy.visitpy, xq : g ⊸ ph ⊸ fq

Arguably, this hierarchy is not always enforced in syntax. This has been famously shown
in Austin & Bresnan (1996) for Australian Aboriginal languages and has also been ex-
plored computationally, for example, in Urdu (Butt & King 2007). The languages in
question are modeled with an exocentric category S that dominates a flat c-structure
(see also Kroeger 1993). In this case, the semantics would not simply recapitulate hi-
erarchical information from the syntax but rather integrate the hierarchical information
directly into the semantics. This is at odds with the idea of a framework that is often
sold on the basis of getting away without structure building (in contrast to, e.g., the
logical form (LF) approach to semantics; Heim & Kratzer 1998). However, ultimately,
it seems to be a question of implicit vs. explicit hierarchical ordering. In other words,
hierarchical structures always emerge. We can either make them explicit, or they will
occur implicitly during the derivation process.

To understand this, let us compare the hierarchical approach above to a flatter ap-
proach: since the rising popularity of event semantics (Davidson 1967; Parsons 1990),
Glue semantics has developed in a direction that eliminates meaningful hierarchical
structure from Glue proofs by treating (some) arguments as modifiers. This develop-
ment perhaps began around the time of Asudeh & Giorgolo (2012), where only op-
tional arguments are treated as modifiers. It also follows a more general trend in formal
semantics away from the traditional saturation-based semantics (i.e., the approach out-
lined above) towards a restriction-based semantics (Chung & Ladusaw 2003).

Just recently, radically modifier-oriented approaches to Glue semantics have found
their way into computational LFG. Two recent works highlight this.32 One of them is on

32Lev (2007) also already uses event semantics, but there core arguments of verbs are still hard-coded

301

λP.λx.P ^ agpeq “ x : f ⊸ g ⊸ f

λP.λx.P ^ thpeq “ x : f ⊸ h ⊸ f visitpeq : f
λx.visitpeq ^ thpeq “ x : h ⊸ f a : h

visitpeq ^ thpeq “ a : f
λx.visitpeq ^ thpeq “ a ^ agpeq “ x : g ⊸ f j : g

visitpeq ^ thpeq “ a ^ agpeq “ j : f

λP.λx.P ^ thpeq “ x : f ⊸ h ⊸ f

λP.λx.P ^ agpeq “ x : f ⊸ g ⊸ f visitpeq : f
λx.visitpeq ^ agpeq “ x : g ⊸ f j : g

visitpeq ^ agpeq “ j : f
λx.visitpeq ^ agpeq “ j ^ thpeq “ x : h ⊸ f a : h

visitpeq ^ agpeq “ j ^ thpeq “ a : f

Figure 12: Simplified event semantics derivations for Jordan visits Alex

coordination (Przepiórkowski & Patejuk 2023), implementing a Champollion (2015)-
style semantics. The other is actually Findlay & Haug (2022), discussed in this paper,
which implements a version of Asudeh et al.’s (2014) restriction-based event semantics.

Example (17) presents a simplified set of meaning constructors for such a restriction-
based semantics.33 As shown there, the meaning of the verb is assembled from its core
meaning, i.e., the eventuality it describes, and its arguments, the entities participating in
the eventuality which are treated as modifiers (one of the fundamental properties of Par-
sons’s 1990 neo-Davidsonian event semantics). As a result, each argument introduces
additional spurious ambiguities (see Figure 12).

(17) John j : g
Alex a : h
visits visitpeq : f

λP.λx.P ^ agpeq “ x : f ⊸ g ⊸ f
λP.λx.P ^ thpeq “ x : f ⊸ h ⊸ f

Computationally, we can use something like the noscope flag mentioned in Sec-
tion 3.4 to avoid spurious ambiguity. However, what this does is simply force an arbi-
trary hierarchy for applying modifiers. After all, we privilege one hierarchical ordering
over the other when we choose a proof tree from the two possibilities in Figure 12.34

In Glue semantics, linear logic is simply a vehicle for constraining the lambda calculus
and, thus, function application forests.

Consequently, a hierarchy will emerge in either case. The only question is whether
enforcing explicitly the hierarchy makes predictions that are not borne out. In many
cases, the main difference seems to be descriptive parsimony (cf. Asudeh et al. 2014).

in the meaning constructors of the verb.
33We leave e as a free variable to keep the types concise. Of course, in actuality, they would be lambda

abstracted over and bound by an existential closure mechanism.
34Computationally speaking, linear logic has the benefit that it is not actually necessary to enumerate the

two possible solutions (i.e., this means they would be constructed and then filtered), but rather, only one
solution can be calculated without ever expecting another one. Critically, this only works in commutative
contexts, i.e., non-scoping contexts.

302

However, the relationship between descriptive parsimony and computational efficiency
is not always clear. What is clear, though, is that computational implementations profit
from explicit structure building to weed out spurious ambiguities.

As the above discussion suggests, the important question could be where the struc-
ture is built. Tools like parameterized rules suggest that disambiguating early can in-
crease performance. Similarly, Zymla (2024) argues that, from a computational per-
spective, it is easier to leave completeness and coherence in f-structure, as unnecessary
computations are avoided in the semantics by filtering out possible but unwanted anal-
yses early. Overall, the idea should be to build structure early where possible. This is
exactly what multistage proving allows us to do. Thus, the fact that it has arisen as part
of the development towards a modifier-based event semantics is not all that surprising.
An alternative view is that multistage proving is another instance of factoring out calcu-
lations (as is the graph prover for the chart prover). This view highlights an alternative
strategy for efficient ambiguity management: distribute complex facts across multiple
simple projections. This, of course, is in the spirit of LFG (Kaplan 1995).

5.2 Extensions of linear logic

The proposal made in this paper presupposes the implicational fragment of linear logic.
There are at least two typical extensions that have been explored in the literature: the
implicational fragment with quantification over variables of type t and multiplicative
linear logic. The first was and is famously used to model the flexibility of quantifiers,
and the second has been used in various guises to generate compound objects. Do these
extensions complicate the current view on ambiguity management?

(18)
@Xt.pee ⊸ Xtq ⊸ Xt ô pee ⊸ %scopetq ⊸ %scopet,

where often %scope = pGF` Òq

(19) a. λx.λy.visitpx, yq : g ⊸ h ⊸ f ô λxx ˆ yy.visitpx, yq : g b h ⊸ f
b. λz.z ˆ z : pÒ ANTECEDENTq ⊸ ppÒ ANTECEDENTq b Òq

The first extension is the de facto standard in Glue semantics theory and is illustrated
in (18). There, two versions of the familiar quantifier type pe ⊸ tq ⊸ t are shown.
The quantifier on the left freely scopes over any constants of type t. In comparison, the
quantifier on the right only scopes over constants that lie on an inside-out functional un-
certainty (IOFU) path (i.e., only constants that dominate the quantifier). Ultimately, the
two approaches are likely equivalent in terms of resulting analyses for quantifier types.
Eliminating quantification over linear logic variables from the used Glue fragment is,
in fact, an instance of resolving ambiguities early that is particularly popular in compu-
tational Glue (for reasons of efficiency, as discussed in the previous section). However,
it is sometimes dispreferred theoretically as it obfuscates semantic autonomy (Gotham
2021; but see, e.g., Andrews 2010 for arguments in favor of the IOFU-approach).

The second extension is the inclusion of multiplicative conjunction. From a com-
putational perspective, the addition of multiplicative conjunction b can be reduced to
linear implication in cases like (19-a) (Hepple 1998). However, it also has the interest-
ing aspect of allowing us to duplicate meanings, e.g., to copy antecedents of pronouns

303

(Dalrymple et al. 1999b).35 Lev (2007: ch. 8.2) shows that such cases can be covered
by the implicational fragment of linear logic, given careful consideration. Furthermore,
Lev (2007) argues that such approaches are difficult to maintain as it is not possible
to rule out spurious ambiguities in corresponding Glue derivations. He concludes that
pronoun resolution should be left to a pragmatic module rather than solved during se-
mantic composition (see also Kokkonidis 2006; Dalrymple et al. 2018). Given the view
defended in Zymla (2024), I am inclined to take a similar stance.

Overall, the extensions discussed here introduce additional complications from a
computational perspective without much payoff. It also seems like they can be ulti-
mately reduced to clever uses of simple function application. Thus, we can maintain the
position that function application is what lies at the heart of formal semantics.

6 Conclusion

The main goal of this paper is to provide a more nuanced approach to ambiguity man-
agement in computational Glue semantics under examination of the recent multistage
proving proposal by Findlay & Haug (2022). To this end, the paper presents a more
faithful implementation that simplifies the computational machinery by eliminating
some adhoc requirements, particularly pre-specified goals. This is achieved by integrat-
ing the original idea into Lev’s (2007) graph-based prover. This also allows us to use
some other tools of the graph-based prover, e.g., the noscope flag that essentially elim-
inates commutatively equivalent analyses, considerably increasing efficiency. Thus, we
can relax or constrain Glue semantics derivations across two dimensions of combinatory
logic (Moot & Retoré 2012). However, the exact configuration based on meaningful se-
mantic generalizations needs to be baked into the formal tools outlined by Findlay &
Haug (2022) and explored in the present paper.

Concretely, as Gotham (2021) explains by virtue of quantifiers, different seman-
tic properties, e.g., semantic monotonicity, may affect scope interactions (see also Lev
2007: 194ff.). Thus, the simple mechanisms of equality and dominance used for build-
ing proof structures may need to be made sensitive to an intricate set of constraints in
the vein of Gotham (2019, 2021). Next to these concerns, phenomena like the excep-
tional scopal properties of indefinites (Farkas 1981; Brasoveanu & Farkas 2011) may
also require more intricate mechanisms for constraining scope. Thus, there is room for
further research regarding the proof structure and multistage proving.

This paper aims to steer research in this direction by providing a computational
implementation of proof structure and multistage proving in XLE+Glue. Through this,
hopefully, computational Glue and theoretic innovation will stay in touch, harboring
LFG’s strength of a close relationship between theoretical and computational research.

References

Andrews, Avery D. 2010. Propositional Glue and the correspondence architecture of
LFG. Linguistics and Philosophy 33(3). 141–170.

35The example given in (19-b) is due to Asudeh (2005).

304

Andrews, Avery D. 2018. Sets, heads, and spreading in LFG. Journal of Language
Modelling 6(1). 1–53.

Asudeh, Ash. 2004. Resumption as resource management. Ph.D. thesis, Stanford Uni-
versity.

Asudeh, Ash. 2005. Relational nouns, pronouns, and resumption. Linguistics and Phi-
losophy 28. 375–446.

Asudeh, Ash. 2022. Glue semantics. Annual Review of Linguistics 8. 321–341. https:
//doi.org/10.1146/annurev-linguistics-032521-053835.

Asudeh, Ash. 2023. Glue semantics. In Handbook of Lexical Functional Grammar,
651–697. Berlin: Language Science Press. https://doi.org/10.5281/zenodo.10185963.

Asudeh, Ash & Gianluca Giorgolo. 2012. Flexible composition for optional
and derived arguments. In Miriam Butt & Tracy Holloway King (eds.),
Proceedings of the LFG’12 Conference, 64–84. Stanford, CA: CSLI Publica-
tions. https://typo.uni-konstanz.de/lfg-proceedings/LFGprocCSLI/LFG2012/papers/
lfg12asudehgiorgolo.pdf.

Asudeh, Ash, Gianluca Giorgolo & Ida Toivonen. 2014. Meaning and valency. In
Miriam Butt & Tracy Holloway King (eds.), Proceedings of the LFG’14 Con-
ference, 68–88. Stanford, CA: CSLI Publications. http://web.stanford.edu/group/
cslipublications/cslipublications/LFG/19/papers/lfg14asudehetal.pdf.

Austin, Peter & Joan Bresnan. 1996. Non-configurationality in Australian Aboriginal
languages. Natural Language & Linguistic Theory 14(2). 215–268.

Brasoveanu, Adrian & Donka Farkas. 2011. How indefinites choose their scope. Lin-
guistics and Philosophy 34. 1–55.

Butt, Miriam & Tracy Holloway King. 2007. Urdu in a parallel grammar development
environment. Language Resources and Evaluation 41. 191–207.

Champollion, Lucas. 2015. The interaction of compositional semantics and event se-
mantics. Linguistics and Philosophy 38(1). 31–66.

Chung, Sandra & William A. Ladusaw. 2003. Restriction and saturation (Linguistic
Inquiry Monographs 42). Cambridge, MA: The MIT Press.

Cook, Philippa & John Payne. 2006. Information structure and scope in German. In
Miriam Butt & Tracy Holloway King (eds.), Proceedings of the LFG’06 Confer-
ence, 141–161. Stanford, CA: CSLI Publications. https://web.stanford.edu/group/
cslipublications/cslipublications/LFG/11/pdfs/lfg06cookpayne.pdf.

Crouch, Dick, Mary Dalrymple, Ronald M. Kaplan, Tracy Holloway King, John T.
Maxwell III & Paula Newman. 2017. XLE documentation. Palo Alto Research Cen-
ter. https://ling.sprachwiss.uni-konstanz.de/pages/xle/doc/xle toc.html.

305

https://doi.org/10.1146/annurev-linguistics-032521-053835
https://doi.org/10.1146/annurev-linguistics-032521-053835
https://doi.org/10.5281/zenodo.10185963
https://typo.uni-konstanz.de/lfg-proceedings/LFGprocCSLI/LFG2012/papers/lfg12asudehgiorgolo.pdf
https://typo.uni-konstanz.de/lfg-proceedings/LFGprocCSLI/LFG2012/papers/lfg12asudehgiorgolo.pdf
http://web.stanford.edu/group/cslipublications/cslipublications/LFG/19/papers/lfg14asudehetal.pdf
http://web.stanford.edu/group/cslipublications/cslipublications/LFG/19/papers/lfg14asudehetal.pdf
https://web.stanford.edu/group/cslipublications/cslipublications/LFG/11/pdfs/lfg06cookpayne.pdf
https://web.stanford.edu/group/cslipublications/cslipublications/LFG/11/pdfs/lfg06cookpayne.pdf
https://ling.sprachwiss.uni-konstanz.de/pages/xle/doc/xle_toc.html

Crouch, Richard & Josef Van Genabith. 1999. Context change, underspecification, and
the structure of glue language derivations. In Mary Dalrymple (ed.), Semantics and
syntax in Lexical Functional Grammar: the resource logic approach, 117–189.

Dalrymple, Mary. 1999. Semantics and syntax in Lexical Functional Grammar: the
resource logic approach. Cambridge, MA: The MIT Press.

Dalrymple, Mary. 2001. Lexical Functional Grammar (Syntax and Semantics 34). San
Diego, CA: Academic Press.

Dalrymple, Mary, Vaneet Gupta, John Lamping & Vijay Saraswat. 1999a. Relating
resource-based semantics to categorial semantics. In Mary Dalrymple (ed.), Seman-
tics and syntax in Lexical Functional Grammar: the resource logic approach, 261–
280.

Dalrymple, Mary, Dag T. T. Haug & John J. Lowe. 2018. Integrating LFG’s binding
theory with PCDRT. Journal of Language Modelling 6(1). 87–129. https://doi.org/
10.15398/jlm.v6i1.204.

Dalrymple, Mary, John Lamping, Fernando Pereira & Vijay Saraswat. 1999b. Quantifi-
cation, anaphora, and intensionality. In Mary Dalrymple (ed.), Semantics and syntax
in Lexical Functional Grammar: the resource logic approach, 39–89.

Dalrymple, Mary, John Lamping & Vijay Saraswat. 1993. LFG semantics via con-
straints. In Proceedings of the Sixth Conference on European Chapter of the As-
sociation for Computational Linguistics (EACL ’93), 97–105. USA: Association for
Computational Linguistics. https://doi.org/10.3115/976744.976757.

Dalrymple, Mary, Agnieszka Patejuk & Mark-Matthias Zymla. 2020. XLE+Glue – a
new tool for integrating semantic analysis in XLE. In Miriam Butt & Ida Toivonen
(eds.), Proceedings of the LFG’20 Conference, 89–108. Stanford, CA: CSLI Publi-
cations. https://web.stanford.edu/group/cslipublications/cslipublications/LFG/LFG-
2020/lfg2020-dpz.pdf.

Davidson, Donald. 1967. The logical form of action sentences. In Nicholas Rescher
(ed.), The logic of decision and action, 81–120. Pittsburgh, PA: University of Pitts-
burgh Press.

Farkas, Donka F. 1981. Quantifier scope and syntactic islands. In Papers from the
Seventeenth Regional Meeting of the Chicago Linguistic Society, 59–66. Chicago,
IL: Chicago Linguistic Society.

Findlay, Jamie Y. 2021. Meaning in LFG. In I. Wayan Arka, Ash Asudeh & Tracy Hol-
loway King (eds.), Modular design of grammar: linguistics on the edge, 340–374.
Oxford, UK: Oxford University Press.

Findlay, Jamie Y. & Dag T. T. Haug. 2022. Managing scope ambiguities in Glue
via multistage proving. In Miriam Butt, Jamie Y Findlay & Ida Toivonen (eds.),
Proceedings of the LFG’22 Conference, 144–163. Konstanz, Germany: PubliKon.
https://lfg-proceedings.org/lfg/index.php/main/article/view/18.

306

https://doi.org/10.15398/jlm.v6i1.204
https://doi.org/10.15398/jlm.v6i1.204
https://doi.org/10.3115/976744.976757
https://web.stanford.edu/group/cslipublications/cslipublications/LFG/LFG-2020/lfg2020-dpz.pdf
https://web.stanford.edu/group/cslipublications/cslipublications/LFG/LFG-2020/lfg2020-dpz.pdf
https://lfg-proceedings.org/lfg/index.php/main/article/view/18

Gotham, Matthew. 2019. Constraining scope ambiguity in LFG+Glue. In Miriam Butt
& Tracy Holloway King (eds.), Proceedings of the LFG’19 Conference, 111–129.
Stanford, CA: CSLI Publications. https://web.stanford.edu/group/cslipublications/
cslipublications/LFG/LFG-2019/lfg2019-gotham.pdf.

Gotham, Matthew. 2021. Approaches to scope islands in LFG+Glue. In Miriam
Butt, Jamie Y. Findlay & Ida Toivonen (eds.), Proceedings of the LFG’21 Confer-
ence, 146–166. Stanford, CA: CSLI Publications. https://web.stanford.edu/group/
cslipublications/cslipublications/LFG/LFG-2021/lfg2021-gotham.pdf.

Gupta, Vineet & John Lamping. 1998. Efficient linear logic meaning assembly. In
Proceedings of the 17th International Conference on Computational Linguistics,
vol. 1, 464–470. Association for Computational Linguistics. https://doi.org/10.3115/
980845.980924.

Heim, Irene & Angelika Kratzer. 1998. Semantics in generative grammar. Oxford, UK:
Blackwell.

Hepple, Mark. 1996. A compilation-chart method for linear categorial deduction. In
Proceedings of the 16th Conference on Computational Linguistics, vol. 1, 537–542.
Association for Computational Linguistics. https://aclanthology.org/C96-1091.

Hepple, Mark. 1998. Memoisation for Glue language deduction and categorial parsing.
In Proceedings of the 17th International Conference on Computational Linguistics,
vol. 1, 538–544. Association for Computational Linguistics. https://doi.org/10.3115/
980845.980935.

Kaplan, Ronald M. 1995. Three seductions of computational psycholinguistics. In
Formal issues in Lexical-Functional Grammar, 339–367. Stanford, CA: CSLI Publi-
cations.

Kokkonidis, Miltiadis. 2006. A Glue/λ-DRT treatment of resumptive pronouns. In Jan-
neke Huitink & Sophia (eds.), Proceedings of the Eleventh ESSLLI Student Session,
51–63.

Kroeger, Richard. 1993. Phrase structure and grammatical relations in Tagalog. Ph.D.
thesis, Stanford University.

Lev, Iddo. 2007. Packed computation of exact meaning representations. Ph.D. thesis,
Stanford University.

Maxwell, John T, III & Ronald M. Kaplan. 1993. The interface between phrasal and
functional constraints. Computational Linguistics 19(4). 571–590.

Meßmer, Moritz & Mark-Matthias Zymla. 2018. The Glue semantics workbench:
a modular toolkit for exploring linear logic and Glue semantics. In Miriam Butt
& Tracy Holloway King (eds.), Proceedings of the LFG’18 Conference, 249–263.
Stanford, CA: CSLI Publications. https://web.stanford.edu/group/cslipublications/
cslipublications/LFG/LFG-2018/lfg2018-messmer-zymla.pdf.

307

https://web.stanford.edu/group/cslipublications/cslipublications/LFG/LFG-2019/lfg2019-gotham.pdf
https://web.stanford.edu/group/cslipublications/cslipublications/LFG/LFG-2019/lfg2019-gotham.pdf
https://web.stanford.edu/group/cslipublications/cslipublications/LFG/LFG-2021/lfg2021-gotham.pdf
https://web.stanford.edu/group/cslipublications/cslipublications/LFG/LFG-2021/lfg2021-gotham.pdf
https://doi.org/10.3115/980845.980924
https://doi.org/10.3115/980845.980924
https://aclanthology.org/C96-1091
https://doi.org/10.3115/980845.980935
https://doi.org/10.3115/980845.980935
https://web.stanford.edu/group/cslipublications/cslipublications/LFG/LFG-2018/lfg2018-messmer-zymla.pdf
https://web.stanford.edu/group/cslipublications/cslipublications/LFG/LFG-2018/lfg2018-messmer-zymla.pdf

Montague, Richard. 1970. English as a formal language. In Bruno Visentini (ed.),
Linguaggi nella società e nella tecnica, 189–224. Edizioni di Communita.

Moot, Richard & Christian Retoré. 2012. The logic of categorial grammars: a deduc-
tive account of natural language syntax and semantics (Lecture Notes in Computer
Science 6850). Heidelberg: Springer.

Parsons, Terence. 1990. Events in the semantics of English. Cambridge, MA: The MIT
Press.

Przepiórkowski, Adam & Agnieszka Patejuk. 2023. Filling gaps with Glue. In Miriam
Butt, Jamie Y. Findlay & Ida Toivonen (eds.), Proceedings of the LFG’23 Conference,
223–240. Konstanz, Germany: PubliKon. https://lfg-proceedings.org/lfg/index.php/
main/article/view/41.

Tarjan, Robert. 1972. Depth-first search and linear graph algorithms. SIAM Journal on
Computing 1(2). 146–160.

Zymla, Mark-Matthias. 2024. Computational challenges from theoretical semantic
modeling in LFG. Unpublished manuscript.

308

https://lfg-proceedings.org/lfg/index.php/main/article/view/41
https://lfg-proceedings.org/lfg/index.php/main/article/view/41

A Proof procedures
Complex chart-based prover example

λQ.@xrpersonpxq Ñ Qpxqs : pge ⊸ Xtq ⊸ Xt

λx.λy.seepx, yq : ge ⊸ he ⊸ ft
λQ.Dyrpersonpyq ^ Qpyqs : phe ⊸ Ytq ⊸ Yt

ÝÑcompile

Agenda Chart
r0sλQ.@xrpersonpxq Ñ Qpxqs : Xt,r3s ⊸ Xt

r3sX : g3e
r1sλx.λy.seepx, yq : ge ⊸ he ⊸ ft
r2sλQ.Dyrpersonpyq ^ Qpyqs : Yt,r4s ⊸ Yt

r4sY : h4
e

. . .

Agenda Chart
r1sλx.λy.seepx, yq : ge ⊸ he ⊸ ft r3sX : g3e
r2sλQ.Dyrpersonpyq ^ Qpyqs : Yt,r4s ⊸ Yt r0sλQ.@xrpersonpxq Ñ Qpxqs : Xt,r3s ⊸ Xt

r4sY : h4
e

Agenda Chart
r2sλQ.Dyrpersonpyq ^ Qpyqs : Yt,r4s ⊸ Yt r3sX : g3e
r4sY : h4

e r0sλQ.@xrpersonpxq Ñ Qpxqs : Xt,r3s ⊸ Xt

r1, 3sλy.seepX, yq : phe ⊸ ftq
3

r1sλx.λy.seepx, yq : ge ⊸ he ⊸ ft
. . .

Agenda Chart
r1, 3sλy.seepX, yq : phe ⊸ ftq

3
r3sX : g3e
r0sλQ.@xrpersonpxq Ñ Qpxqs : Xt,r3s ⊸ Xt

r1sλx.λy.seepx, yq : ge ⊸ he ⊸ ft
r2sλQ.Dyrpersonpyq ^ Qpyqs : Yt,r4s ⊸ Yt

r4sY : h4
e

Agenda Chart
r1, 3, 4sseepX,Y q : f3,4

t r3sX : g3e
r0sλQ.@xrpersonpxq Ñ Qpxqs : Xt,r3s ⊸ Xt

r1sλx.λy.seepx, yq : ge ⊸ he ⊸ ft
r2sλQ.Dyrpersonpyq ^ Qpyqs : Yt,r4s ⊸ Yt

r4sY : h4
e

r1, 3sλy.seepX, yq : phe ⊸ ftq
3

Agenda Chart
r0, 1, 3, 4s@xrpersonpxq Ñ seepx, Y qs : f4

t r3sX : g3e
r1, 2, 3, 4sDyrpersonpyq ^ seepX, yqs : f3

t r0s@xrpersonpxq Ñ Qpxqs : Xt,r3s ⊸ Xt

r1sλx.λy.seepx, yq : ge ⊸ he ⊸ ft
r2sλQ.Dyrpersonpyq ^ Qpyqs : Yt,r4s ⊸ Yt

r4sY : h4
e

r1, 3sλy.seepX, yq : phe ⊸ ftq
3

r1, 3, 4sseepX,Y q : f3,4
t

Agenda Chart
r0, 1, 2, 3, 4sDyrpersonpyq ^ @xrpersonpxq Ñ seepx, yqss : ft r3sX : g3e
r0, 1, 2, 3, 4s@xrpersonpxq Ñ Dyrpersonpyq ^ seepx, yqss : ft r0s@xrpersonpxq Ñ Qpxqs : Xt,r3s ⊸ Xt

r1sλx.λy.seepx, yq : ge ⊸ he ⊸ ft
r2sλQ.Dyrpersonpyq ^ Qpyqs : Yt,r4s ⊸ Yt

r4sY : h4
e

r1, 3sλy.seepX, yq : phe ⊸ ftq
3

r1, 3, 4sseepX,Y q : f3,4
t

r0, 1, 3, 4s@xrpersonpxq Ñ seepx, Y qs : f4
t

r2, 1, 3, 4sDyrpersonpyq ^ seepX, yqs : f3
t

. . .

2

309

B Non-atomic modifier example – multiple adjectives
(20) A big black dog appeared.

{
//10: adjective test; 1 solution
appear : (7_e -o 11_t)
a : ((9_e -o 8_t) -o ((7_e -o 11_t) -o 11_t))

{
big : ((9_e -o 8_t) -o (9_e -o 8_t))

{
black : ((9_e -o 8_t) -o (9_e -o 8_t))
dog : (9_e -o 8_t)
}

}
}

Figure 13: Meaning constructors and derivation graph for example (20)

(21)

r0s : λx.dogpxq : 9e ⊸ 8t
r1s : λP.λQ.DxrP pxq ^ Qpxqs : p9e ⊸ 8tq ⊸ p7e ⊸ 11tq ⊸ 11t
r2s : λP.λx.rblackpxq ^ P pxqs : p9e ⊸ 8tq ⊸ 9e ⊸ 8t
r3s : λP.λx.rbigpxq ^ P pxqs : p9e ⊸ 8tq ⊸ 9e ⊸ 8t
r4s : λx.appearpxq : 7e ⊸ 11t

ÝÑcompile

r0s : 9e ⊸ 8t
r1s : 8t ⊸ 11t ⊸ 11t
r2s : 8t ⊸ 9e ⊸ 8t
r3s : 8t ⊸ 9e ⊸ 8t
r4s : 7e ⊸ 11t
r5s : 9e
r6s : 7e
r7s : 9e
r8s : 9e

(22)

r2s : 8t,7 ⊸ 9e ⊸ 8t
r3s : 8t,8 ⊸ 9e ⊸ 8t
r0, 5s : 85

r0, 7s : 87

r0, 8s : 88

r5s : 9e
r7s : 9e
r8s : 9e

ÝÑpartition

#

r2s : 8t,7 ⊸ 9e ⊸ 8t
r0, 5s : 85

r0, 7s : 87

r0, 8s : 88

r5s : 9e
r7s : 9e
r8s : 9e

Óprove

r3s : 8t,8 ⊸ 9e ⊸ 8t
r0, 2, 5, 7s : 8t
r0, 2, 7, 8s : 8t
r5s : 9e
r7s : 9e
r8s : 9e
r0, 5s : 85

r0, 7s : 87

r0, 8s : 88

+

ÝÑprove r0, 2, 3, 5, 7, 8s : 8

•Due to the disjoint index-set constraint and the need to discharge assumptions, only the
blue elements may be combined into a single solution.

310

	Introduction
	Compositional ambiguities in Glue semantics
	Graph-based proving
	Compilation of premises
	The category graph
	Semantic derivation
	Partioning premise sets

	A faithful implementation of multistage proving
	The proof structure
	Original implementation and criticism
	Graph-based multistage proving
	XLE+Glue with proof structure
	Exploring multistage proving

	Some general considerations on ambiguity management
	Imposing hierarchical structures
	Extensions of linear logic

	Conclusion
	Proof procedures
	Non-atomic modifier example – multiple adjectives

